神经退行性疾病是痴呆症最常见的原因。虽然他们潜在的分子病理已经确定,但在这些疾病之间和内部的进行性脑改变模式存在实质性的异质性。神经成像方法的最新进展表明,病理蛋白沿着特定的宏观脑网络积累,暗示大脑的网络结构在神经退行性疾病的系统水平病理生理学中。然而,“基于网络的神经变性”在多大程度上适用于广泛的神经退行性疾病仍不清楚。在这里,我们讨论最新的基于神经成像的连接组学用于神经退行性过程的映射和预测。我们回顾了支持脑网络作为病理蛋白传播的被动通道的发现。作为另一种观点,我们还讨论了补充工作,表明网络改变积极调节病理蛋白在连接的大脑区域之间的传播。我们通过提出一个综合框架来总结这一观点,在这个框架中,基于连接体的模型可以沿着创新的三个维度推进:在可测量的生物特征的基础上纳入调节传播行为的参数;构建患者定制的模型,使用个人级别的信息,并允许模型参数随时间动态交互。我们讨论了这些策略的承诺和陷阱,以提高疾病洞察力和走向精准医学。
1. 简介
阿尔茨海默病、路易体病(LBD)和额颞叶变性是神经退行性痴呆(NDD)最常见的病因。由于对疾病病因、病理生理和进展的不完全了解,开发NDD治疗干预措施的努力仍然受到阻碍。尽管不同的NDD有许多相似之处,但理解和治疗它们的主要障碍是它们非常复杂的临床病理关系(图1)。相同的原发病理可以产生多种临床综合征。例如,阿尔茨海默病的病理可导致情景记忆、执行功能、视觉空间处理、语言、行为甚至运动功能的初始和主要缺陷。相反,一个单一的临床综合征可以出现在不同的神经退行性病因。例如,健忘的临床表现可能由阿尔茨海默病、TAR dna结合蛋白-43 (TDP-43)或脑血管疾病的病理驱动。一个理想的建模和理解NDD的框架应该能够解决分子病理及其相关临床综合征之间复杂的相互作用。从这个角度来看,我们认为这样的框架应该依赖于脑网络,它代表了连接脑病理与痴呆综合征的中间内表型。考虑到大脑中大规模的功能网络是认知能力的基础,大脑病理学的网络特异性传播可以作为理解不同神经退行性疾病表型变异性的框架(图1)。
图1 神经退行性痴呆综合征的临床病理谱
对死后人体组织的研究指出,异常蛋白质聚集体经常共定位于彼此具有强解剖联系的大脑区域。这些观察结果为“朊病毒样”传播假说奠定了基础,提出病原蛋白起源于朊病毒样种子聚集,随后沿着构成大规模脑网络的神经元通路传播。Seeley等人的关键工作提供了令人信服的证据,通过揭示不同的痴呆综合征与可分离的萎缩模式相关,每种模式都类似于支持特定心理能力的大规模大脑网络,从而支持这一命题。这项工作创造了网络退化假说,该假说在过去十年中得到了进一步的巩固。尽管有越来越多的证据表明神经退化与大脑网络有关,但我们对这种关系的细节缺乏基本的了解。一个关键的问题是,在神经退行性疾病的进展中,神经网络是被动的(结构上的)还是主动的(额外的功能上的)作用。“朊病毒样”传播假说提出,网络是一种“被动的”解剖导管,病理因子可以通过它进行运输(例如,错误折叠的蛋白质通过突触接触和轴突运输从一个细胞传播到另一个细胞)。然而,最近的证据支持另一种假设(尽管并非相互排斥),该假设涉及疾病病理和神经元回路动态特性之间更“活跃”的联系 (例如,病理性过度活跃的神经元在其突触过度产生和分泌病理性蛋白质)。这一观点将大脑网络定位为疾病进展的直接催化剂,其中网络的功能特性动态地影响疾病进展和病理蛋白的传播,而不仅仅是作为传播途径。
在这个观点中,我们讨论了两种机制假说,据称是网络退化假说的基础:网络作为病理传播的管道和网络作为疾病进展的驱动因素。重要的是,我们在建立疾病模型的更大背景下考虑这些假设,这些模型可以调和疾病之间和个体水平上的差异。最后,我们提出了一个框架,利用神经影像学的新进展来解决疾病进展建模中的当代挑战。因此,我们希望就基于网络的建模的进步如何最终丰富临床工作,如在个体水平上预测疾病进展,辅助诊断和指导临床试验,产生一个实际的讨论。
2. 作为管道的网络连接
2.1 脑网络和病理重叠
网络退化假说的一个重要概念是连接组:大脑的大规模网络,通过轴突通路连接。这些网络跨越多个大脑区域,这些区域在物理上可能不是相邻的,但它们仍然通过轴突通路和/或随着时间的推移通过耦合活动联系在一起。除了前面描述的死后研究之外,神经影像学研究已经使用了各种方法来支持这些网络可以作为病理蛋白传播渠道的概念(图2)。在阿尔茨海默病中,使用正电子发射断层扫描(PET)的神经影像学研究显示,β-淀粉样蛋白的空间分布与默认模式(DMN)和额顶叶脑网络的地形之间存在大量重叠。以及tau-PET沉积与综合征特异性功能网络之间的空间对应关系。其他常见的神经退行性疾病还没有PET示踪剂,无法在体内对病理蛋白进行特异性测量,但对帕金森病和额颞叶痴呆(FTD)谱系障碍患者的MRI研究显示,灰质萎缩以综合征特异性的方式优先分布在功能网络的边界内。我们注意到,大型功能网络和病理之间的空间匹配通常是适度的,最多显示60%的重叠。这种差异有几种可能的解释,包括不同模式的空间分辨率差异、定义网络的不同方法策略、人群中网络地形的生物学差异以及可能的非网络病理进展模式。此外,网络本身表现出一种异构的拓扑结构,例如hub——具有许多大脑连接的节点——经常超出单一网络的边界。然而,这些方法为更全面的基于连接体的模型奠定了基础,这些模型旨在解释大脑网络和大脑病理之间的关系。
图2 评估网络结构对疾病进展影响的常用方法
2.2 相关网络模型
当代研究使用了更精确的方法来比较大脑网络和大脑病理学,这是一个被称为“相关网络模型”的模型家族。这些模型基于图论,其中图的节点由大脑区域表示,图的边表示这些大脑区域之间的生物或功能连接(图2a)。这种方法有助于获得大脑的表征,可以用来评估连接体是如何组织的。连接体扩散假说的一个核心原则是,病理蛋白最初起源于一个或多个位置,通常称为疾病中心,并通过突触接触传播到整个大脑连接组。因此,基于连接体的疾病进展模型假设,随着时间的推移,与震中有突触连接的大脑区域更容易接受病理蛋白。基于震中的相关模型(图2b)通过识别来自疾病震中的特定大脑网络来验证这一假设-在疾病过程的早期显示出高水平的大脑改变的区域。请注意,在实践中,研究在如何定义震中方面存在很大差异。例如,一项研究可能将震中确定为在数据集中观察到的最大病理、萎缩或疾病加速的点,它可能与疾病起始的初始位点一致,也可能不一致(然而,参见随后提到的“放大节点”的讨论)。
一些研究发现内侧颞叶tau震中的区域连通性与阿尔茨海默病中tau- pet示踪剂的区域摄取有关,这表明tau优先在与震中密切相关的区域积累。同样,疾病特异性病理中心的功能或结构连接模式与基于mri的脑萎缩模式相关,包括语义性痴呆、原发性进行性失语症(PPA)、行为变异性FTD (bvFTD)、帕金森病、进行性核上性麻痹(包括理查森综合征)、皮质基底综合征和非典型阿尔茨海默病(包括其他变体中的后皮质萎缩)、执行障碍和行为综合症。纵向成像研究进一步表明,在阿尔茨海默病、非典型阿尔茨海默病变体(包括后皮质萎缩、bvFTD、语义变体PPA (svPPA)和帕金森病中,与病理震中密切相关的区域表现出病理性蛋白质积累或灰质萎缩的最快速度。
总之,这些基于震中的模型为病理蛋白在不同NDD中的跨神经元传播提供了强有力的证据。值得注意的是,在疾病进展过程中,连接到震中的某些大脑区域可能充当放大节点,在整个网络中进一步传播病理蛋白。在阿尔茨海默病患者中,tau到达下颞叶后,后皮层新皮层的tau积累加速,表明该脑区是将tau从内侧颞叶传递到其他脑皮层区域的重要节点。最近的研究进一步支持了这一观点,表明任意两个区域之间的连通性强度平均与这两个区域之间共享的病理数量或纵向病理积累率相关(图2c)。当疾病到达一个放大节点时,往往标志着疾病进程开始加速,这使得识别这些节点通常与识别疾病中心一样重要。
2.3 基于网络的弥散模型
网络作为病理传播通道的概念表明,疾病的进展可以利用大脑网络信息来模拟或预测,也许是在个体水平上(图2)。已经提出了几个定量模型,使用网络信息来模拟神经退行性疾病背景下的脑病理进展。这些方法将给定时间点的区域病理浓度建模为前一个时间点连接区域病理浓度的功能。这些模型通过经验测量的大脑网络有效地模拟病理扩散,是动态检验病理扩散假设的绝佳手段。当使用弥散加权成像(DWI)衍生的结构脑连接组作为约束时,网络弥散模型模拟的疾病模式显示出与阿尔茨海默病、bvFTD、svPPA、帕金森病和亨廷顿病中灰质萎缩的强烈空间对应。有趣的是,来自扩散模型的模式也倾向于类似于特定的规范功能网络。网络扩散模型也被应用于纵向数据,表明人类大脑网络的结构足以预测阿尔茨海默病和帕金森病的纵向灰质萎缩,以及阿尔茨海默病中tau-PET的区域积累。人类研究中的这些发现最近在NDD小鼠模型中得到证实。这些研究符合通过轴突追踪研究获得的微尺度小鼠连接组的网络扩散模型,这些信息用于预测注射疾病原纤维后不同时间点的区域病理浓度。该方法已被成功用于预测tau和α-突触核蛋白的区域浓度,远远超过了应用于人类MRI数据的扩散模型的预测。网络扩散模型在动物身上的成功不仅支持了这些模型的预测效用,而且加强了连接组形成病理传播渠道的证据。
原始脑网络扩散模型的一个重要限制是,它没有纳入“系统阻力”,即可以影响感染因子局部水平和扩散的蛋白质积累或清除等速率修饰因素。一些当代模型已经出现,克服了这一限制,并在这样做的过程中,创造了更好地理解疾病传播的潜在神经生物学的额外方法。流行病传播模型(ESM)允许病理蛋白的区域浓度作为个体水平产生和清除过程的功能而改变,例如,局部播散和小胶质细胞吞噬分别在模型中参数化。与网络扩散模型不同,ESM需要定义震中,并从最初的自发病理事件模拟扩散。当应用于阿尔茨海默病谱系中个体的PET数据时,ESM不仅解释了高达70%的β-淀粉样蛋白和tau的区域模式,还解释了45-56%的β-淀粉样蛋白-PET和tau-PET在个体水平上的空间变异性。在这两种情况下,ESM还确定了与尸检研究结果相符的疾病中心。最近的另一篇论文描述了一个动态系统模型,该模型使用贝叶斯非参数回归来预测β-淀粉样蛋白通过连接体的扩散。与ESM类似,本研究模拟了包括蛋白质积累、聚集和扩散在内的生物过程,并表明这样做比仅模拟蛋白质聚集和扩散的模型更好地预测了β-淀粉样蛋白。其他模型试图引入更现实的蛋白质生产速率和机制。易感-感染-移除是另一种基于图的扩散模型,它试图解释神经细胞群受到病理蛋白感染最终萎缩的事实。这些不同模型的一个共同点是,它们都试图模拟局部病理机制和大脑区域的广泛空间扩散。这些参数的建模提供了引人注目的潜力,从体内的人类数据绘制机制的见解。然而,要真正可靠,这些参数将需要纵向验证,以避免过拟合,并更好地评估与生物过程相关的模型参数的可靠性。此外,所讨论的模型很少与模拟可能在驱动关联中起作用的底层数据的统计特性的零模型进行比较。对于许多这样的模型来说,几乎没有什么特征可以简单地预测到偶然的影响大小。零建模可以帮助建立模型或感兴趣的单个预测因子对性能做出重大贡献的可能性。
先前描述的研究提供了一致的证据来支持病理蛋白使用轴突束作为繁殖管道的想法。然而,很少有工作成功地将这些模型应用于预测个体层面的区域疾病传播。正如以下章节所讨论的那样,可以将研究界目前可获得的许多因素结合起来,以提高基于网络的模型的预测价值。然而,这些模型都假设网络是促进蛋白质传播的惰性管道。最近的研究表明,大脑网络对疾病进展的贡献可能不是静态的,而实际上可能是病理生理过程的一个积极和动态的方面。
3. 网络可以驱动疾病进展
前一节概述了网络作为静态元素形成的基础设施,允许病理蛋白质从大脑的一个部分到另一个部分(图3a)。然而,在多个尺度上的证据表明,网络可能在疾病传播中起着更积极的作用。这一假设的关键在于假设全球网络环路是在脆弱状态下组织起来的,在这种状态下,对主要节点的大干扰可以改变或威胁整个系统。功能磁共振成像(fMRI)和电生理学研究发现,异常网络活动是许多NDDs中常见的早期病理特征,并随着疾病进展而改变。在细胞水平上,神经元激活和突触活动调节病理蛋白的扩散。因此,脑网络动力学的改变可能改变或触发神经退行性病理的扩散(图3b)。本节的剩余部分将讨论支持以下前提的最新证据:网络动力学的改变影响疾病进展——独立于、附加于或代替病理性繁殖。
图3 脑网络作为疾病进展的管道和驱动因素
3.1 阿尔茨海默病的病理和网络活动
大量最初来源于阿尔茨海默病动物模型的文献表明,蛋白质聚集体的局部积累可以破坏NDD的微尺度细胞活动和环路。β-淀粉样蛋白,无论是斑块形式还是可溶性形式,都已被证明可以增加突触传递,增加兴奋性神经元之间的同动性,并促进谷氨酸能网络的突触后兴奋性。过度兴奋的神经网络反过来刺激局部神经元分泌β-淀粉样蛋白,增加突触tau蛋白的产生和繁殖。相比之下,通过实验减弱这种过度活跃可减少下游病理的产生。这些现象被认为相互作用,形成一个恶性循环,病理蛋白刺激神经元的高兴奋性,导致病理蛋白的分泌和扩散增加,最终可能压倒局部清除机制。如前所述,该序列可能通过突触伙伴网络通过病理蛋白的传递进行传播,也可能通过高兴奋信号的传递进行传播,这可能会增加突触后神经元中病理蛋白的分泌。
利用人类神经成像的后续工作支持了病理和网络活动在宏观功能成像可检测到的尺度上相互作用的概念。淀粉样蛋白诱导的高兴奋性不仅在小鼠中表现为癫痫样放电,而且在轻度认知障碍(MCI)和早期阿尔茨海默病痴呆患者中表现为亚临床和临床癫痫。此外,用功能磁共振成像测量的异常局部网络活动已经成为阿尔茨海默病的一个公认的早期特征。海马过度活跃是fMRI活动改变的最一致和最早发现的表现之一,随后会出现其他大规模网络的破坏。人类β-淀粉样蛋白沉积与脑脊液突触活动标志物升高和广泛的网络超连通性和超激活有关,特别是在海马、颞叶区域和前额叶。这种活动反过来又与更快的tau积累速率和神经变性有关。虽然这些研究是观察性的,但它们表明阿尔茨海默病病理沉积与网络活动紊乱之间存在密切关系。
阿尔茨海默病病理和网络活动之间的关系并不直接。据报道,tau沉积水平的增加对小鼠的神经元活动有沉默作用,可能会抑制淀粉样蛋白诱导的高兴奋性。这一点得到了人类淀粉样蛋白诱导的海马兴奋性后网络失活阶段的观察结果的显著支持。认知功能未受损的老年人的早期tau积累与海马体和跨模式关联网络的过度活跃有关,但它也与疾病后期的低激活和低连接阶段有关。因此,随着疾病进展,网络活动可能遵循倒u型轨迹,其中淀粉样蛋白诱导的超连通性的早期阶段支持tau的分泌和跨神经元扩散,从而通过直接突触沉默或通过神经变性导致tau诱导的低连通性 (图3b)。
其他研究提出了相反的观点,其中tau的存在对于支持淀粉样蛋白相关的超兴奋性是必要的,并且去除tau可以防止恶性循环。例如,早期的研究发现,在癫痫动物模型中,去除内源性tau可降低癫痫发作的风险,最近的一项研究发现,从人脑脊液中提取的tau可增加小鼠海马神经元的神经高兴奋性。此外,最近的一项脑磁图研究发现,阿尔茨海默病患者的β-淀粉样蛋白与抑制模式增加有关,tau蛋白与兴奋模式增加有关。具有较长测量周期的纵向神经成像数据或下一代疾病模拟将使研究人员能够观察到网络变化与连接区域病理聚集产生之间的暂时解决关系。
3.2 非阿尔茨海默病痴呆的网络活动
与阿尔茨海默病文献相比,支持非阿尔茨海默病病理与网络动力学之间关系的文献很少。在细胞水平上,β-淀粉样蛋白沉积显著加速了路易体病小鼠模型中α-突触核蛋白的产生和扩散。同时,神经元活动也促进α-突触核蛋白的表达和扩散。最近的一些研究甚至发现了α-突触核蛋白对神经元活动相互影响的证据,这再次暗示了病理蛋白和神经元活动形成恶性循环的可能性。网络功能障碍在突触核蛋白病(如帕金森病)中有报道,其中感觉运动、基底神经节和额叶区的功能连接异常预测疾病进展,有时独立于脑萎缩。然而,尽管这些研究发现已知α-突触核蛋白积聚的网络中存在功能性失衡,但这些疾病的病理与网络动力学之间的直接关系尚不清楚。
尽管如此,大规模的网络活动似乎在帕金森病的发病或传播中发挥了一定作用,这一点在服用抗癫痫药物的人群中帕金森病发病率的增加中得到了证明。关于TDP-43在神经元活动中的潜在作用,我们所知的就更少了,但有证据表明,TDP-43表达的改变与树突重塑有关,而且它可能既调节神经元活动,也被神经元活动所调节。与帕金森病类似,在TDP-43蛋白病变的综合征特异性网络中观察到功能异常。例如,人类神经影像学研究表明,显著性网络内连接的改变是bvFTD的一个显著特征。同样,关于svPPA的研究也报道了DMN的减少和显著性网络连通性的增加,并伴有时间极锚定语义评估网络的预期功能障碍。与此同时,最近的研究表明,症状前颗粒蛋白(GRN)基因突变携带者(一种导致额颞叶变性的突变)的丘脑皮质高度同步,这一发现与GRN敲除小鼠模型一致。
网络超连通性也被描述为临床前亨廷顿病的一个特征。最近的一项研究表明,分子神经变性与后皮层区域间纵向连接增加之间存在相关性。然而,功能变化是否以及如何与这些疾病的进展相关仍然未知。连通性的改变可能直接或间接地影响病理扩散和/或随疾病进展而发生的神经退行性变化,或者它们可能只是病理生理过程的副产品。
3.3 网络驱动疾病进展
前面的段落描述了病理蛋白在大脑中的传播可以通过这些蛋白质对神经元回路活动的直接或间接影响而加速的证据。另一种观点认为,尽管病理性蛋白引发功能性失衡,但这种异常的功能活动本身是疾病进展和下游神经退行性变的主要驱动因素。根据这一观点,健康大脑的功能连接体在网络之间相互依赖的状态下运作。在神经退行性疾病的背景下,病理蛋白的初始积累会损害局部节点的活动,导致其他节点的放电率和突触可塑性失衡。这种局灶性异常将导致分布式网络不稳定(例如,表现为兴奋性或抑制性平衡被破坏,或模块化降低),最终在整个连接组中产生影响,导致神经变性和认知障碍。请注意,这与历史上的“断开连接综合征”概念一致,其中认知或行为缺陷是由连接的原发性病理引起的,通常由初始病变或侮辱引起。将这种观点应用于神经退行性疾病,网络稳态失调(表现为,例如,大脑网络模块性降低,兴奋/抑制平衡被破坏等)将是催化神经退行性和认知障碍的现象。注意这一概念与大脑连接中断作为次要结果而不是疾病进展和神经退行性变的驱动因素的疾病之间的区别。
神经成像模型已经研究了这一假设,提出在认知正常的脑淀粉样变性患者中观察到的DMN和内侧颞叶之间的连接紊乱可能是初始的动态失调事件。内侧颞叶高兴奋性被认为是这一事件的直接结果,如前所述,也可能驱动内侧颞叶的tau积累和萎缩。内侧颞叶网络的功能障碍将是第二个网络不稳定事件,它将开始影响整个大脑的功能处理中心,进一步以网络关系预测的级联方式协调全球网络退化。在这种模型中,网络失衡是疾病进展的驱动因素,随后产生的病理蛋白是次要的或互补的。DMN和突出网络内的功能改变已被发现可以独立于tau-PET预测纵向皮质变薄和海马体积损失。另一项专门研究认知正常个体海马体的研究发现,海马体的局部功能失调与海马体与其他记忆相关区域之间的功能脱节有关。这种不连通性进一步预测了tau在连接区域的存在,表明内侧颞叶功能障碍是阿尔茨海默病病理传播到同皮层的催化剂。这些发现得到了早期使用结构MRI作为tau诱导的神经变性代理的类似观察结果的支持。此外,在阿尔茨海默病小鼠模型中进行的一项有趣的fMRI研究表明,tau蛋白与静止时连通性下降有关,但随后的内嗅皮层的化学激活导致连接区域的过度激活。这些研究形成了另一种观点(尽管并非相互排斥),即疾病引起的功能失衡和断开是神经退行性变的主要驱动因素,超出了病理学的直接影响。一个重要的警告是,神经病理学的神经影像学特征可能无法捕捉到蛋白质聚集的早期阶段。因此,在病理积累之前观察到的网络变化可能会受到方法学的影响
3.4 无主体假设
最后一个必须考虑的假设是,网络退化可能完全独立于基于代理的传播而发生。在这种情况下,局部病理状态——而不是病理底物——在神经元之间传播。局部病理状态可以被认为是细胞失调的一种状态,导致细胞产生更多或清除更少的病理蛋白。这种状态可能是内在可传播的,也可能是通过下游蛋白的产生而传播的。在这种观点中,病理是在自发的病理状态下局部产生的,但本身并不是繁殖的媒介。支持的一个支柱来自这样一个事实,即没有观察到克雅氏病以外的神经退行性蛋白通过直接的物理相互作用经历破坏性的模板化。换句话说,没有证据表明单体或低聚物通过物理相互作用直接诱导天然折叠或未折叠蛋白质的错误折叠。此外,尽管跨神经元分子运输的各个方面已被证明在生物学上是可能的,但单一病理因子的轴突扩散从未被实时跟踪作为突触后位点病理产生的来源。最后,疾病中心的概念是疾病传播的大多数假设的核心,它要求接受一种自发出现的病理状态,即使只是在一个时间点和地点。因此,蛋白质繁殖的主流观点承认自发的病理状态是可行的。目前讨论的另一种“可传播的病理状态”假设认为,自发病理状态的必要条件可以通过网络传播,从而引发新的下游病理状态。癫痫发作提供了一个熟悉的例子,病理状态通过大脑网络级联,没有明确的疾病亚策略。有趣的是,考虑到患者的年龄,中年癫痫患者的颞叶切除显示出比预期更大程度的tau病理,这为最初的网络中断导致阿尔茨海默病病理提供了一些证据。此外,网络可预测的变化可以通过直接刺激诱导,并且在非生物网络中也描述了类似的级联网络中断过程。
与病理蛋白类似,病理状态可以通过突触连接传递。在这种情况下,状态本身(或启动状态的条件)可能被认为是一个代理,这种情况仍然可以用于基于代理的神经退行性疾病模型。再次以癫痫为例,单个基因座可以引发邻近甚至偏远区域的功能改变或破坏。然而,另一种可能性是,脆弱网络由大脑区域组成,这些区域对催化病理状态的条件具有共同的脆弱性。在这种情况下,病理状态沿着脆弱性的区域梯度级联,其中每个失败节点降低后续节点屈服于病理状态的阈值。支持这一观点的是,参与相同网络的大脑区域往往具有许多其他特性,如形态学、发育同步性和基因表达模式。因此,网络退化可能发生,因为特定网络的独特分子或细胞环境倾向于有利于病理状态的条件。在这种情况下,几个脆弱区域的交错变性或病理性积累可能会造成扩散的错觉。无论网络退化是否基于主体,有证据表明,与疾病相关的网络特性在确定NDD如何以及在何处进展方面发挥着作用,因此应作为疾病建模的考虑因素。通过同时模拟网络扩散和内在组织特性(在下一节讨论)并结合仔细的零建模,可以量化连通性和局部易感性对疾病进展的贡献,尽管可能需要进行实验工作来梳理这些贡献。
4. 面向下一代预测模型
尽管疾病进展模型在过去十年中迅速发展,但我们仍在努力实现我们认为的这类模型的两个目标。第一个目标是为个体疾病进展提供量身定制的预测。这种单独解决的模型的最终目标是预测临床情况下的疾病进展,并提供针对患者的参考,以监测治疗反应。第二个目标是获得神经退行性疾病进展的新见解。对疾病进展的精确模拟提供了一个机会,可以在通常不可能进行实验的情况下,根据人体数据进行测试和产生假设。为了实现这些目标,下一代基于网络的疾病进展模型将是必要的。我们认为,利用神经科学的最新趋势和进展,疾病进展模型可以在三个维度上得到改进:静态和动态生物学特征的整合,个人层面信息的整合,以及最先进的结构和功能连接组特征估计的结合(图4)。
图4 下一代基于连接体的模型可以在三个维度上进行创新
4.1 整合静态生物特征
虽然大脑区域之间的连通性可以预测NDD病理的空间地形,但连接组本身并不能完全解释对这些病理的易感性和脆弱性的差异。这种变异性提出了一个问题,即是否有其他因素有助于区域易感性,从而影响空间扩散格局。一个蓬勃发展的领域已经注意到易受神经退行性病理影响的大脑区域之间共有的分子和生理特征。大脑网络嵌入在大脑皮层层次组织的较大梯度中,这与大脑的骨髓结构、细胞结构和转录拓扑结构一致。此外,这些梯度与神经递质密度分布的自然轴重合(例如,抑制性到兴奋性),并动态协调大量的认知能力。重要的是,大规模梯度也与大脑网络组织直接相关,特别是区分感觉皮层和联想皮层的“主梯度”。值得注意的是,阿尔茨海默病中β-淀粉样蛋白的积累在主要梯度的一端最为突出,其中包括跨模联性皮层,而另一端包括单模感觉皮层的区域往往特别抵抗阿尔茨海默病的分子病理学。有趣的是,在健康的大脑中显示出更多β-淀粉样蛋白积累的同一跨模式区域也显示出更多的有氧糖酵解和阿尔茨海默病期间的代谢功能障碍。这些发现指出,由于与阿尔茨海默病的病理重叠,大脑特征的一致地形表明,机制关系可以解释β-淀粉样蛋白的区域模式。
一般来说,具有强连接的区域表现出相似的基因表达、皮层微观结构和协调的血流动力学和神经振荡活动。相互连接的区域在神经发育过程中是耦合的,因此可能具有许多共同的特性,这些特性使它们易于(或保护它们免受)不同的蛋白质病变。将转录组基因表达的空间模式与各种NDDs的脑病理模式相匹配的研究已经出现了趋同的结果。在人脑中,沿tau蛋白繁殖路径的区域表达与脂质代谢、谷氨酸能神经元、轴突和树突过程相关的基因。在FTD中,易受神经退行性变影响的区域富含与血管和胶质细胞功能相关的基因,而不受影响的区域则富含线粒体功能。对神经细胞单核的分析也暗示了某些类型的细胞对某些疾病特别脆弱。例如,在阿尔茨海默病的早期和晚期涉及的区域,易感神经元倾向于兴奋并表达分子标记,如RORB或BAG。类似地,在黑质腹侧致密部表达agtr1的神经元选择性地易受帕金森病病理影响,而Von Economo神经元和Betz细胞分别在FTD和肌萎缩性侧索硬化症中特别易受影响。这些发现表明,分子特性提供了关于细胞、细胞群和整个大脑区域是否易受退行性病理影响的信息。最近的研究表明,这将是改进传播模型的有效途径。在帕金森氏病中,被提名为最有可能的连接体传播中心的区域也是帕金森氏病相关基因表达最多的区域。这一观察结果在帕金森病和阿尔茨海默病的动物模型中得到了证实,其中转基因小鼠对脑病理的局部易感性不能用连接组信息来解释,而是部分地通过特异性tau相关基因和α-突触核蛋白相关基因的表达来解释。同样,代表小胶质细胞激活的TREM2表达有助于解决阿尔茨海默病小鼠模型中网络结构与病理之间的关系。
下一代疾病进展模型可以通过使用区域分子数据作为连接组模型的静态节点特征来整合这些信息(图4,y轴)。最近的研究已经开始将这一原理整合到基于连接体的模型中。Zheng等人发现,分别基于SNCA和GBA基因的规范空间表达模式,修改模拟α-突触核蛋白的局部蛋白产生和清除,可显著改善帕金森病灰质萎缩的预测模型。最近的一项研究在注射α-突触核蛋白的转基因小鼠中重复了这一发现,发现网络结构和SNCA表达都有助于预测α-突触核蛋白从不同注射点的传播。同一组的另一项研究发现,TARDBP和C9orf72的表达改善了预测bvFTD萎缩模式的基于连接体的模型的拟合。沿着类似的思路,最近的工作将空间基因表达信息纳入了一个基于多模态连接体的模型,该模型试图解释阿尔茨海默病谱系中发生的大脑变化。在所有研究中,纳入这些节点级参数往往会使模型的性能提高12-30%,尽管这些改进是高度依赖于上下文的。这些发现共同提供了强有力的证据,表明通过规范转录组信号测量的区域脆弱性可以改善基于连接体的传播模型。在这一点上,一项研究发现,添加一般皮层基因表达特征可以提高预测bvFTD萎缩模式的网络扩散模型的性能。然而,仔细的零假设和替代假设程序显示,这一发现可以通过基因表达和连接体地形之间的重叠来解释。这是一个重要的考虑因素,因为它突出了脑通信网络和脑分子相似性网络之间的空间协方差。除了补充基于连接体的传播模型外,疾病相关基因的规范转录本也可能代表潜在的治疗目标。然而,区域基因表达模式并不是作为静态节点特征整合到基于连接体的模型中的唯一候选者;任何代表与疾病进展相关的生物学现象的变量都可以纳入。强有力的人体和体外证据支持不同的共病理相互作用影响神经变性和疾病进展的观点。此外,在阿尔茨海默病和帕金森病中,髓鞘形成和原发病理之间的定性比较表明,髓鞘形成较高的区域比髓鞘形成较晚的和髓鞘形成较薄的区域表现出较低的错误折叠蛋白病理。最近的神经影像学研究支持了这一假设,表明白质纤维束的髓鞘形成调节了区域tau-PET共变和区域连通性之间的关系,而较高的区域髓鞘形成减弱了这种关系。基于神经影像学的皮质髓鞘形成模式也被证明与疾病相关转录物的空间分布呈反相关,特别是APOE和SNCA。然而,这一前提并非普遍正确,因为某些阿尔茨海默病变体(例如,皮质基底变性)的特征是tau蛋白在高髓鞘区积累。神经递质受体组织是另一个可能调节神经退行性病理的脑特征;最近的研究已经表明,空间分辨的受体密度可能是决定大脑连通性和功能的重要因素。尖端研究正在探索这些大脑特征、大脑连接和大脑病理之间的复杂关系。需要注意的一点是,这里描述的许多属性显示出重叠的地形,特别是沿着前面提到的感觉关联轴。纵向的、受试者内部的测量和补充的实验工作将需要梳理出哪些特性(如果有的话)是导致疾病过程的原因。
使用静态节点特征的一个重要警告是,病理和大脑特征的空间重叠不一定表明因果关系或局部关系。然而,整合诸如基于连接体模型的局部调节剂等特征仍然是一种很有希望的方法,可以测试预先存在的区域脆弱性假设,也可能是识别以前未知的疾病传播贡献者的重要方法。
4.2 个体建模
不同个体的疾病进展差异很大。疾病亚型、共同病理、个体特异性生理以及对病理的抵抗力和恢复力的个体间差异都有助于个体进展的特质。因此,适用于群体的“一刀切”模型可能能够恢复疾病进展的广义拓扑结构,但无法预测个体水平上的病理积累。下一代疾病进展模型将需要在个体水平上进行拟合,并可能受益于不同的初始条件,以及基于个体信息的节点和边属性(图4,z轴)。这一概念已经通过增强基于连接体的模型与个性化疾病中心(震中)进行了探索。最近的研究表明,基于发病年龄或tau-PET和淀粉样蛋白pet亚型的不同疾病中心可以提高基于连接体的病理扩散模拟的预测性能。阿尔茨海默病的其他研究和FTD使用个体特异性震中来提高检测纵向tau积聚或脑萎缩的能力。因此,允许扩散的初始条件因受试者而异,显然是迈向个性化连接体模型的第一步。
连接体模型的另一个有趣的潜在改进途径将涉及连接体本身的特殊变异。绝大多数使用连接体预测模型的研究都是基于连接体模板,这些模板是在数百名年轻健康的参与者中平均得到的。然而,一致的研究表明,每个人都表达了自己的连接体“指纹”。尽管与总体网络组织相比,网络组织中的个体差异是微妙的(这在人们之间是相当一致的),但仍然有可能仅根据个人大脑网络属性从人群中识别个人。一种解释疾病传播区域差异的假设是,个体网络结构可能影响疾病病理的差异传播。其他证据表明,网络组织可能影响对疾病进展的恢复能力。使用基于DWI或静息状态fMRI(或两者)数据的个性化网络可能有助于解决扩散模式的差异。然而,需要注意的是,个性化的网络测量可能更容易受到数据采集和处理过程中引入的信噪比问题的影响——特别是对功能磁共振成像的研究表明,延长采集时间通常是必要的,以提高检测单个连接组特征的可靠性和灵敏度。相比之下,使用个性化的网络度量提高了使用大脑网络预测样本外数据集行为的模型的泛化性,通常需要更少的数据来完成。不幸的是,很少有研究在神经退行性扩散模型的背景下评估个体化连接体(尽管基于图的相关方法已经利用了这些方法)。未来的研究需要评估通过这些方法获得的个人层面的信息是否可以克服潜在的虚假信号的增加。
最后,前面描述的静态节点特征也可能因个体而异。例如,考虑衡量疾病共同病理的个别区域信息,可能有效地改善对疾病进展的个人预测。虽然静态节点特征的许多令人兴奋的潜力集中在区域基因表达上,这不能在个体水平上确定,但最近的进展已经允许在DNA、血液转录和体内蛋白质组学的基础上估计个体大脑基因表达。个体的基因组可能被用来推断区域基因表达,这可能随后被纳入一个节点特征。将基于个体的信息集成为基于连接体的模型的静态节点特征有许多有趣的可能性,但据我们所知,这种方法迄今尚未在研究中得到探索。
4.3 模拟动态交互
也许下一代基于连接体的模型最具挑战性的方面是允许模型的参数随时间变化(图4,x轴)。目前的模型假设网络的边和节点特性在整个疾病过程中保持静态。尽管我们仍然不确切地知道大脑网络的变化是否或如何改变致病传播的拓扑结构,但疾病进展模型是通过模拟测试这些假设的极好方法。一些例子可能包括增强与经历早期病理阶段的某些节点相连的边的连通性,或者通过减少与已屈服于高级病理的节点相连的边的强度。最近的工作证明了将动态网络活动纳入疾病进展模型的可行性,概述了在阿尔茨海默病病理生理过程中观察到的网络变化的早期和晚期阶段。
这个概念也可以扩展到节点,这样受损的节点不必表现出连续的生产或传播病理,就像它们在大多数当前基于连接体的模拟中所做的那样。事实上,大多数证据表明,感染区域并不表现出无限的病理性生产;相反,细胞群最终会死亡或达到生产的平稳期。淀粉样蛋白-PET似乎在疾病过程的早期就饱和了,由于脑萎缩,总PET水平最终下降了。最近的纵向tau- pet研究表明,随着时间的推移,tau水平也存在类似的复杂区域动态,病理学研究表明,在肌萎缩侧索硬化症等疾病中,神经元死亡导致严重受影响区域的病理组织学染色减少。易感-感染-去除模型代表了在疾病进展过程中以简约方式改变节点特性的一个例子。另一种表示动态复杂性的方法是同时对多种病态建模,并可能允许这些病态动态地相互作用。过去的工作已经证明了这种方法的可行性,并且它可能代表着一个重要的进步,因为在大多数NDDs中存在多种共同病理是规则而不是例外。
5. 总结
尽管我们已经概述了对现有基于连接体的模型的许多潜在改进,但这项工作的一个重要考虑因素将是加强新模型特征的简约性和可解释性。例如,通过允许几个不与可测量变量绑定的自由参数来增加模型复杂性可能会改善模型拟合,但不太可能普遍化或提供生物学信息。理想情况下,新的建模参数将直接与可解释的生物现象与疾病相互作用的现有因果证据联系起来。此外,这些参数应该通过改进预测和/或减少误差或损失来提供新的信息。新功能还需要对零假设和可选假设具有鲁棒性。现在存在易于执行的方法,用于对noda和edgewise特征进行空间感知零假设检验。同时,应继续评估备选假设。例如,研究已经开始集中于β-淀粉样蛋白在整个大脑中自发产生的证据,一项研究表明,局部复制最终对tau积累比网络传播更重要,清楚地表明需要进一步研究这些现象。幸运的是,基于连接体模型的节点之间的潜在边关系不需要从区域连通性中估计;区域之间的任何边关系(例如,距离、转录组相似性和血管连通性)都可以用来代替。
这里回顾的研究强烈支持神经影像学是估计独特的、与疾病相关的内表型的关键资源的观点。通过神经成像,基于连接体的模型在过去十年中有了显著的改进,并有助于测试人类疾病进展的假设。关键的下一步将是使这些模型在一系列生态有效的临床情况下具有预测性。这些模型不仅有助于解决不同患者疾病进展之间的差异,还可以帮助我们更好地了解大脑以及它是如何随着年龄的增长而恶化的。因此,我们鼓励研究人员不仅要继续改进基于连接体的模型,而且要将它们用作假设生成工具,以便通过实验模型进一步验证。我们还远远没有达到疾病进展模型提供的关于NDDs的见解的全部潜力,我们期待着在这个令人兴奋和有前途的研究领域进行下一个十年的研究。
参考文献:Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight.