个体功能连接预测认知控制效率

认知控制(CC)对于解决日常生活中的问题至关重要,并且与CC相关的缺陷与大代价和衰弱性疾病一起发生。三方模型表明,CC包括多种行为,包括切换、抑制和更新。额顶叶控制网络B (FPCN-B)、背侧注意网络(DAN)、扣谷-鳃盖网络(CON)和侧默认模式网络(LDMN)的活动与转换和抑制行为有关。然而,我们对这些大脑区域如何相互作用导致个体认知转换和抑制的理解尚不清楚。在目前的研究中,受试者执行两项需要转换和抑制的扫描内任务。我们使用支持向量回归(SVR)模型来预测FPCN-B、DAN、CON和L-DMN之间的转换和抑制行为。我们观察到:网络间连通性可以预测个体的抑制和切换行为,L-DMN在切换和抑制行为中起作用。因此,单独估计的网络间连接是CC行为的标志,CC行为可能是由一组网络之间的相互作用产生的。

1. 简介

认知控制(CC)包括指导思想和行动以实现日常活动的过程。认知转换有三个不同但相关的组成部分:认知转换、抑制和更新。大脑各区域如何相互作用以表现CC尚不清楚。我们不完整的理解可能是由前额叶皮层(PFC)和侧顶叶的复杂区域驱动的(或大脑区域的空间映射),其中存在与CC相关的环路。基于群体的图谱和短息扫描序列也导致了关于CC的脑行为关系的混淆推断。重要的是,先前的研究表明,在PFC区域内观察到的功能拓扑的个体差异可以预测部署CC的能力。此外,CC网络拓扑结构的个体差异与对照组和被诊断为神经精神疾病的个体的行为有关。尽管我们对CC和包含这些行为的网络的知识取得了这些进展,但我们对这些网络如何相互作用以抑制个体的反应和切换任务的理解仍然存在差距。在目前的研究中,我们重点研究了四个理论上在CC中起关键作用的功能性大脑网络:额顶叶控制网络(FPCN)、扣谷-鳃盖网络(CON)、背侧注意网络(DAN)和默认模式网络(DMN)。在这项研究中,我们研究了这些网络如何相互作用来预测CC。

1.1 与认知控制相关的认知功能脑网络

1.1.1 额顶叶控制网络(FPCN)

FPCN经常与转换和抑制反应和想法有关。FPCN还作为一个中心,对来自DAN和CON的信息进行偏倚和集成,以实现任务目标。最近的研究表明,FPCN在功能上是异构的,这使得研究人员将FPCN分为两个网络:FPCN- a和FPCN- b。这些研究发现,在需要内部引导认知的任务中,FPCN-A内的功能连通性与DMN内的活动呈正相关。在外部引导的认知任务中,FPCN-B与DAN相关。总之,这些研究表明了功能和拓扑结构的差异在FPCN-A和FPCN-B之间。

重要的是,FPCN和其他网络之间的相互作用可以预测个体的流体智力。这些发现表明,功能网络之间的关系可能对理解个体的CC过程有意义。然而,之前的研究并没有调查FPCN-A和FPCN-B如何与其他网络相互作用以产生CC行为的个体差异。

1.1.2 扣带-鳃盖网络(CON)

CON在必要时跟踪控制过程并保持警觉性。当出现刺激时,CON对于冲突监测也至关重要。先前的研究表明,FPCN实现了对认知过程的控制,而CON维持了对完成给定任务至关重要的任务集目标。如果这个模型是准确的,那么这两个网络之间的功能连接应该可以预测某人如何在需要主体调节控制、监视冲突和维护任务集的任务上实现CC。

1.1.3 背侧注意网络(DAN)

DAN通过转移空间注意力、将自上而下的认知倾向于刺激和处理对执行任务重要的感觉信息来引导CC在跳眼运动期间以及当受试者到达物体以完成任务时。在CC任务中,DAN的一个被称为额视野的区域向FPCN提供必要的感觉加工信息。因此,为了在试验水平上操纵控制,FPCN和DAN似乎可能相互作用。

1.1.4 默认模式网络(DMN)

DMN内的活动通常与大脑休息有关,但在内省思维、自发认知、工作记忆处理、创造性解决问题和发散思维、语义记忆处理和任务切换。与FPCN一样,DMN也包含多个不同的网络。规范中线网络(规范- DMN)和横向成分(L-DMN)(与需要内部思维的外部介导任务(即任务切换)相关)。FPCN还可以操纵DMN内的活动,其中对左DLFPC (FPCN的一个节点)的神经调节可以导致DMN内网络连通性的显着降低。尽管L-DMN与任务切换有关,目前尚不清楚FPCN和L-DMN是否相互作用以执行CC行为。研究这些网络如何与个体相互作用可能有助于该领域了解DMN和FPCN的复杂功能多样性。

1.2 当前研究的基本原理

先前的工作证明了FPCN、CON、DAN和DMN的功能独立性,它们支持与CC相关的单独过程。然而,研究人员还没有研究这些网络之间的个人估计连接是如何重要的,或者如何预测CC行为。建立网络动态和CC行为之间的关系对于理解网络如何支持个体内部的CC功能至关重要。此外,这些发现可能指导影响分布式CC系统的个性化治疗进展。目前的研究考察了个体估计的、基于任务的网络内部连接如何预测图形-背景集转换(转换成本)和优势认知的抑制(抑制成本)。我们检验两个独立的假设。首先,我们假设FPCN-B、CON、DAN和L-DMN的网络互联性会预测切换和抑制行为,而FPCN-A不会预测切换或抑制行为。其次,我们假设涉及CC功能的网络将以三种重要方式相关:(a) FPCN-B和L-DMN之间的连通性将呈正相关,代表两个网络协同工作以执行外部引导控制;(b) FPCN-B、CON和DAN之间将观察到正连通性,作为执行控制的整体工作的标志;(c) L-DMN连接将与其他任务正向网络,特别是DAN和CON呈正相关,以支持切换和抑制

2. 方法

2.1 被试

本研究招募了42名健康的右撇子成年人(女性54.8%),平均年龄26.6 (SD±7.53)岁,受教育程度17.05(±2.6)年。

2.2 行为学任务

受试者要么执行Navon转换任务,要么执行Stroop抑制任务,要么同时执行两个任务(见图1)。受试者最初被随机分配Navon任务或Stroop任务。如果他们有兴趣参加至少一周后的第二次会议,他们就会执行另一项任务。42名入组受试者中有11名(26.2%)同时完成了这两项任务;所有其他受试者只参与了一个任务。共有29名受试者执行Navon转换任务,21名受试者执行Stroop抑制任务。

图片

图1 任务示意

2.3 解剖和功能图像采集和预处理

2.3.1 数据采集

使用成分w MPRAGE体积采集结构像,功能磁共振映射(fMRI)采用3.0 T Siemens Tim Trio全身扫描仪,采用全头椭圆线圈和单次梯度回波T2*。如图2所示,功能网络的预处理和估计总览图。 

图片

图2 功能数据预处理和个体功能网络估计

2.3.4 个体功能网络映射

进行个体层面的连通性分析可以解释功能地形(大脑区域位置)和拓扑(这些区域如何连接)的个体间变异性,而不是使用群体地图集来解释。我们使用先前描述的方法和MATLAB软件在个人内部进行连接映射。迭代分段拟合过程步骤如下:(1)使用Freesurfer将Yeo及其同事的皮质图谱投影到每个个体的半球表面,并在每个网络内的顶点上平均BOLD时间序列。(2)然后将参考信号与每个受试者在每个顶点的BOLD信号进行关联,然后将每个顶点分配到其最大两两相关。在给定的顶点内,使用两个最高相关参考信号之间的平均相关性来创建置信度指标,并为所有顶点分配置信度值。将高于阈值的BOLD信号取平均值以创建“核心信号”。(3)将核心信号与加权参数(功能连通性和时间信噪比的主体间变异性)和原始参考信号相乘。这些新的产品信号作为下一次迭代的参考,并确保图集在较高的个体间变异性和信噪比区域的权重小于核心信号。

在分组假设的116个ROIs中,我们观察到所有个体在Navon切换任务和Stroop抑制任务表现中的ROIs约为73.1%。收集的任务数据量的限制或个体中缺失的功能性ROI可能解释了为什么我们没有检测到较小的ROI。然而,获得的ROI数量与之前在健康对照中检查单独映射的ROI的研究相似。如果一个特定的ROI没有映射到个人,那么ROI将被删除,并且该区域将根据随后的最高种子相关性进行标识。映射方法的概述见图2。

2.3.5 统计学分析

我们计算了每个对比的平均值和平均值的标准误差(SEM)。我们还通过计算分半数据的类内相关性(ICC)报告了每个对比的可靠性。简单地说,二分信度是通过从Stroop和Navon任务的低需求和高需求运行中去除最初的6次试验来计算的。然后,我们删除了响应时间小于0.2 ms的试验和错误的试验。最后,剩下的试验被平均分配,这样105个试验(210/2 = 105)在每个任务的开始和结束。然后,这些试验被随机打乱,以消除任务的时间顺序影响。然后使用高要求试验的中位反应时间和平均准确性计算对比。这个过程产生了Navon和Stroop任务的两个向量。ICC(2,k)是在这两个向量上计算的,一个用于任务的开始,一个用于任务的结束。自举95%置信区间是通过对10,000个样本的替代对比进行抽样来计算的(图3)。

图片

图3 用于预测转换和抑制行为的管道示意图

2.4 控制区域

为了确定我们的结果对感兴趣的网络(FPCN-B, DAN, CON)的特异性,我们将原始模型的模型拟合与由一组控制区域组成的模型拟合进行了比较。这些控制区域是FPCN-A,初级视觉网络和典型DMN。网络间连通性的提取过程与我们之前描述的提取我们感兴趣的原始网络的过程相同。这些CC行为结果矩阵的网络间连通性被用来训练SVR模型来预测CC行为。结果见补充部分:控制区分析。

3. 结果

3.1 行为学

正如我们所料,我们观察到个体的准确性显著降低和更慢,与在Navon任务中没有转换的试验相比,个人也不准确和慢。

3.2 假设1:FPCN-B、CON、DAN和侧向DMN之间的个体估计功能连通性预测了单个受试者的集合切换和抑制行为

我们检验了我们的第一个假设,即网络间功能连接可以预测转换成本和抑制成本准确性和响应时间。我们观察到支持我们的第一个假设,因为FPCN-B、CON和DAN之间的功能连通性显著地预测转换成本的响应时间优于零分布,见图4。我们还观察到这些网络之间的连通性显著预测抑制成本反应时间:假设模型的中位数MSE = 0.39,排列p值= 0.0,R²= 0.37;假设模型的中位数MSE = 0.27,排列p-value = 0.0,R²= 0.20。然而,切换成本精度模型在多次比较的修正后无法存活(切换成本精度:假设模型的中位数MSE = 0.82,置换p值= 0.0115,R² = 0.29)。我们还观察到,基于群体的图谱可以显著预测切换成本准确性和反应时间,但不能预测抑制成本相关行为。这些结果与我们的假设一致,即FPCN-B、DAN和CON之间的相互作用在预测个体抑制优势刺激的能力以及他们在全局和局部任务集之间切换的速度方面很重要。

图片

图4 (上图)预测个体转换和抑制行为的基于表面的网络表示。(下)将我们的假设模型(FPCN-B、CON和DAN之间的连通性预测个体的转换和抑制)与随机零分布进行比较的置换测试。x-axis表示模型均方误差(MSE),y-axis表示单个模型的频率计数。

我们还测试了将L-DMN添加到模型中是否会提高我们预测转换或抑制行为的能力。我们观察到这一假设得到部分支持。具体来说,包括L-DMN在内的整体模型拟合在预测转换成本准确性方面优于零分布。然而,这些网络之间的相互作用并没有比零分布更好地预测转换成本响应时间。他们提供了更差的个人反应时间拟合。我们还观察到,这些网络之间的相互作用成功地预测了抑制成本的准确性,优于零分布。然而,FPCN-B、L-DMN、CON和DAN之间的相互作用显著地比零分布更好地预测抑制成本反应时间,但该模型在多次比较的修正中未能存活下来。我们还观察到,除了抑制成本准确性外,基于群体的图谱不能显著预测任何抑制成本或转换成本行为。因此,单独估计的功能连通性对这些行为结果更为敏感。我们的结果表明并支持我们的假设,即添加L-DMN可以改善个体估计的功能连通性与CC行为之间的模型拟合。

在后者的综合模型中,我们检查了使用网络连接预测抑制和转换成本响应时间和准确性的相对特征重要性。我们观察到L-DMN和DAN之间基于任务的网络连接是预测响应时间和切换成本准确性的最重要特征。此外,我们还观察到FPCN-B和CON的网络间连通性是预测抑制成本响应时间和准确性的最重要特征。

我们还测试了FPCN-A和FPCNB之间是否存在解离,以预测抑制和转换。为了测试这种分离,我们检查了先前用FPCN-A而不是FPCN-B描述的模型。我们观察到对第一个假设的部分支持,因为在Navon切换任务期间测量的FPCN-A, DAN和CON之间的功能连通性显着预测响应时间优于零分布,在Stroop任务中测量的功能连接显著预测抑制准确性和抑制反应时间。然而,切换成本精度模型在多次比较的修正中无法存活。我们还观察到,从群体模板衍生的这些网络可以显著预测切换成本准确性和响应时间,但不能显著预测抑制成本行为。与我们的假设相反,FPCN-A不是预测主动切换或抑制行为的重要因素。这些结果表明,认知控制网络和FPCN-A之间的连接对于个体抑制优势行为的能力和切换任务集所需的时间是重要的。

我们还测试了模型中的解离,包括与L-DMN和FPCN-A的网络连接。我们观察到FPCN-A、CON、DAN和L-DMN之间的连性显著预测切换和抑制准确性优于零分布。此外,这些网络之间的相互作用也显着预测切换响应时间优于零分布,但该模型无法通过多次比较校正。我们观察到,FPCN-A、DAN、CON和L-DMN之间的相互作用比零分布更好地预测抑制准确性和反应时间,但该模型比零模型更差。

我们还观察到,单独估计整个大脑的功能连通性并不能预测转换成本或抑制成本。最后,我们还观察到这些网络的基于组的模板可以预测切换成本响应时间和抑制成本准确性。我们的研究结果表明,L-DMN、FPCN-A、DAN和CON之间的连通性在解释切换任务集和抑制优势行为的个体差异方面很重要。

3.3 假设2:认知网络之间的相关性

最后,作为我们的第二个假设,我们研究了在Navon切换和Stroop抑制任务中CC网络的相关结构。在Stroop抑制任务和Navon切换任务期间,由于两个模型都没有经过多次比较的校正,我们没有观察到对假设2a的支持,即FPCN-B和L-DMN之间的连接性呈正相关。我们观察到FPCN-B, CON,DAN,在Stroop抑制任务中,FPCN-B和CON,DAN,支持假设2b。为了部分支持我们最后的子假设2c,我们观察到L-DMN和DAN之间的功能连通性在Navon切换任务中呈负相关,在Stroop抑制任务中不显著。此外,在Navon切换任务和Stroop抑制任务中,L-DMN和CON的网络间连连接性呈正相关(见图5)。

图片

图5 显示皮尔逊r相关性的条形图,显示个体之间的成对网络连接。误差条使用来自10k启动过程的95%置信区间进行估计。Navon转换和Stroop抑制任务的Pearson’s r相关描述。x-axis表示网络间的两两相关,y-axis表示Pearson’s r相关系数。

3.4 FPCN-A与CC相关结构的探索性分析

为了进一步了解CC功能网络之间的关系,我们研究了FPCN-A、DAN、CON和L-DMN之间的连通性。在Navon切换任务中,高需求条件与低需求条件之间以及FPCN-A与CON之间的平均连通性显著正相关,但与DAN不显著相关,与L-DMN正相关。此外,在Stroop抑制任务中,我们观察到FPCN-A与CON之间的连通性和FPCN-A与L-DMN之间有显著正相关,但DAN不存在。

4. 讨论

目前的研究调查了FPCN-B、L-DMN、CON和DAN之间的相互作用是否能预测一组健康年轻人的CC行为。我们观察到的证据支持以下几个结论:(1)FPCN-B、DAN和CON相互作用预测转换和认知抑制;(2) L-DMN在转换和认知抑制中起作用;(3) FPCN-A与DAN、CON和L-DMN相互作用,网络间的动态关系预测CC行为;(4)这些结果推广到新的研究对象样本;(5)个体执行任务时FPCN-B、DAN、CON和L-DMN之间的相互作用与以往文献中观察到的连接模式相似。我们的研究结果进一步证明,切换和抑制是通过一系列控制网络来执行的,这些控制网络共同产生这些行为。

我们观察到FPCN-B、DAN和CON之间的相互作用预测了个体切换任务集的能力。先前的研究表明,在一个广泛分布的系统内,包括DAN、FPCN和CON,当人们在任务集之间切换时,平均会发生活动。这些结果表明FPCNB、DAN和CON作为一个整体来产生任务集切换。个体设置转换的潜在途径如下。CON监测环境中的全局和本地切换实例,并管理控制资源的参与,而DAN参与注意门控(特别是在必须忽略某些刺激成分(全局刺激与局部刺激)的情况下)。然后,FPCN-B集成DAN和CON给出的信号,执行被控过程,并根据反馈和任务规则选择适当的响应。

我们的研究结果表明,先前关于不同大脑区域如何沟通以执行认知抑制的模型是正确的,因为FPCN-B、CON和DAN动态预测认知抑制的特异性比一组控制网络和全脑估计的功能连接。具体来说,CON负责冲突监测和偏向FPCN的选择,, FPCN区域在Stroop任务的不一致试验中经常表现出活动的增加,这可能与基于任务集选择适当的反应有关。我们的研究结果还表明,FPCN-B和CON相互作用是预测抑制行为的最重要组成部分。这些发现表明,在面对不一致的试验时,CON和FPCN-B相互作用以监测和制定试验水平的控制,并且这对认知抑制的个体差异很敏感

左DMN的活动与切换任务集有关,可能有助于放松集中在一个心理集上的注意力,从而转移到新的刺激和设置。(例如,从局部刺激处理转向全局刺激处理)。我们的研究结果表明,LDMN可能通过与FPCN-B、DAN和CON相互作用来执行个体内的控制过程,从而执行CC行为。其中一个更引人注目的结果是,该模型最重要的特征是L-DMN和DAN之间的动态。先前的研究表明,在任务执行过程中,FPCN、CON和L-DMN密切相关,并且在集合转换过程中,FPCN、L-DMN和DAN促进了内部和外部定向认知。同样,我们观察到添加L-DMN可以提高模型拟合的预测精度,从而抑制Stroop任务中的自动过程。这些结果支持了先前研究的证据,表明DMN参与Stroop抑制。与先前研究提出的功能过程一样,可能是L-DMN的加入与其他控制网络相互作用,并有助于脱离自动过程,从而使控制过程接管并抑制单词阅读。综上所述,我们假设内部引导和外部引导系统之间的合作,分别是L-DMN和DAN,为基于上下文线索选择正确的任务集提供了支持。

我们还观察到FPCN-A和FPCN-B与转换和抑制行为有关。先前的研究表明,FPCN-B与执行过程的外部引导认知有关,而FPCN-A与控制的内部引导认知加工有关。然而,其他研究表明,外侧前额叶皮层在主动控制期间保持活跃,这表明大脑的这些区域在反应后的控制计划和控制调节中很重要,Nee及其同事的研究进一步支持了这一观点,该研究表明,DLPFC的前部与抽象处理、设定维持和控制任务的计划有关。事实上,FPCN-A靠近DLPFC的最前端节点似乎在调节内部和外部引导的认知过程之间的关系方面发挥着重要作用。如果这是真的,FPCN-A可能会计划并重新校准个体在即将到来的转换和认知抑制试验中的表现,这是基于先前试验的反馈。

我们的研究结果表明,认知抑制和任务集转换的个体差异需要FPCN-A和FPCN-B。具体来说,FPCN-A可能参与试验前计划(即认知分支和子目标创建),并在转换和抑制过程中在内部和外部引导的认知之间发挥合作作用。相比之下,FPCN-B可能会在个体内部进行即时的审判执行和审判后的重新校准。支持这些拟议功能的研究是使用受试者之间的活动图和观察到的外侧前额叶皮层(LPFC)区域之间的活动差异,而尾侧区域则与整合来自额鳃盖(DAN的一部分)和运动处理区域的感觉信息有关。此外,Nee和D 'Esposito表明,双侧LFPC的吻侧区域也与预测未来的过程需求和响应时间有关,这表明FFCN - a等区域促进了CC更自上而下的作用。

5. 总结

在这项研究中,我们证明了功能网络之间的个体差异预测了个体在三方控制模型中执行三种CC行为中的两种行为的能力。我们还表明,CC网络可能在个体内部作为一个整体起作用,以产生准确和及时的切换和抑制行为。虽然网络拓扑(在这里,连接强度的测量)被认为不太可靠,但对这些测量缺乏可靠性的关注可能是一个错误的问题,因为这种缺乏可靠性可能是在分析拓扑之外的地形个体差异和时间动态,这些都与行为有关。重要的是,我们使用从个体估计的拓扑来预测CC行为,这表明尽管存在这些方差来源,但仍然可以识别稳定和可建模的特征。本研究中采用的方法应该促进与执行控制缺陷相关的临床人群的新研究,如注意力缺陷多动障碍(ADHD)和其他精神和神经疾病。

参考文献:Individual-level functional connectivity predicts cognitive control efficiency.

  • 21
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值