结构-功能脑网络耦合预测人类认知能力

摘要:一般认知能力(GCA)的个体差异在人脑的结构和功能中具有生物学基础。网络神经科学揭示了GCA在结构和功能脑网络中的神经相关性。然而,结构网络和功能网络之间的关系,即结构-功能脑网络耦合(SC-FC耦合)是否与GCA的个体差异有关,仍然是一个悬而未决的问题。我们使用了来自1030名成人的人类连接组项目数据,通过扩散加权成像获得结构连通性,通过静息状态fMRI获得功能连通性,并评估了GCA作为12项认知任务的潜在g因子。两个相似性测量和六个通信测量被用来模拟可能的功能相互作用产生的结构脑网络。在全脑水平上,较高的GCA与较高的SC-FC耦合相关,但仅在将路径传递性作为神经通信策略时才如此。考虑到SC-FC耦合策略的区域特异性变化,并区分与GCA的正相关和负相关,可以在交叉验证的预测框架中预测个体认知能力得分。同样的模型也可以预测完全独立样本的GCA评分。我们的研究结果提出结构-功能脑网络耦合与GCA的神经生物学相关联,并提出脑区域特异性耦合策略是预测认知能力的神经基础。

1. 引言

人类的一般认知能力(GCA)水平各不相同,通常通过智力测量来评估。尽管GCA通常可以互换地称为一般情报,GCA代表了一种相当模糊且通常定义不清的认知功能结构,而一般智力的心理学概念与其他智力概念不同,并且具有更精确的理论基础。具体来说,它基于以下观察结果:各种认知任务的绩效分数彼此正相关,即存在正流形。根据智力的g因子理论,每项任务的表现由一般智力决定,反映了所有任务共有的潜在心理能力维度,并由特定因素决定这对于每个给定任务都是唯一的。过去几十年的研究表明,一般智的个体差异与重要的生活结果有关,包括学术和职业成就,社会经济地位,甚至与健康和长寿。尽管完整的大脑结构和大脑功能对于有效认知至关重要,但GCA个体差异背后的神经生物学机制仍然难以捉摸。智力网络神经科学理论认为,不仅不同大脑区域的结构和功能,而且尤其是它们之间的相互作用和信息流对于解释智力的个体差异至关重要。这种概念模型与心理学理论密切相关,心理学理论假设GCA是由几个基本认知过程的协调作用引起的。

功能性脑网络连接的特征也与GCA有关,例如,与高级认知功能有关的大脑区域的效率和模块化。然而,两种模式的对齐(SC-FC耦合)与GCA的关系尚未得到研究。虽然SC和FC相关(即耦合),但存在不完全的对应关系。已经开发了各种方法来估计SC-FC偶联的量,包括统计模型,生物物理模型和沟通模型。一种直接的统计方法是通过关联结构和功能连接矩阵来直接比较这两种模式。然而,这种方法的主要挑战之一是SC表示仅捕获直接解剖连接的稀疏矩阵,而FC表示捕获所有成对相互作用的完整矩阵,而不考虑直接解剖连接。克服这个问题需要一个神经动力学模型,该模型可以应用于稀疏的SC矩阵,并近似于结构上没有直接连接的大脑区域之间的关系。相似性测量是此类模型的一种类型,它表达了所有可能的大脑区域对之间结构连接的相似性。它们的应用导致几乎完全连接的相似性矩阵,从而弥合了大脑结构和功能之间的差距。生物物理模型考虑了合理的生物学机制来模拟 SC和FC之间的联系,但计算成本高昂。最后,网络通信模型是基于神经通信的特定策略(例如,最短路径路由、扩散或导航)从SC估计神经动力学的另一种方法。与相似性度量的情况一样,这种方法还导致几乎完全连接的通信矩阵(从SC计算),然后可以与实际的FC进行比较,因此这两种方法都允许对SC-FC耦合进行有效检查。

更具体地说,通信测量量化了特定通信模型提出的信号传导策略下成对大脑区域之间的通信难易程度。与仅量化SC-FC耦合量的统计方法相比,通信测量与实际 FC 重叠的程度提供了对不同神经通信过程的见解。对沟通模型研究 SC-FC 耦合效用的支持来自于研究报告称,当设置与 FC 相关的通信措施而不是原始 SC 时,耦合强度得到改。最后,还提出了沟通模型作为分析个体差异的 SC-FC 耦合的有前途的手段。

在这里,我们系统地检查了来自人类连接组项目的1030 名成年人样本中 GCA 和 SC-FC 偶联之间的关联。首先,我们在大脑平均水平上测试了GCA和SC-FC耦合之间的潜在关联。其次,开发了一个经过交叉验证的预测框架,该框架考虑了偶联策略中特定区域的变化,以及与GCA的正负相关。评估了该模型预测以前看不见的参与者的个人认知能力得分的能力。最后在独立的重复样本中重复所有分析,并通过跨样本模型泛化检验评估预测模型的泛化性。

2. 方法

2.1 预注册

在开放科学框架中预先注册了感兴趣的分析计划和变量:https://osf.io/wr9aj。请注意,与我们的预注册不同,HCP 被用作主要样本,因为初始样本不包含计划分析所需的所有数据,并且拥有超过 1000名受试者的好处对于开发交叉验证的预测框架至关重要,后者增加了结果的稳健性并允许估计我们研究结果的普遍性, 但最初没有计划。此外,还包括一个额外的外部复制样本(AOMIC)。进一步注意,为了保持明确的重点,我们还偏离了我们的预注册,只报告了第一个提出的假设的结果,而其他假设则侧重于额外的认知测量和潜在的中介因素将在单独的出版物中讨论。

2.2 参与者

主要分析是在 HCP 年轻成人样本 S1200 中进行的,包括 1200 名年龄在 22-37 岁的受试者。根据通过逐帧位移测量的扫描仪内头部运动排除了受试。在Parkes等人之后,扫描a)平均帧位移超过0.2毫米,b)运动尖峰大于20%的比例,c)任何超过5毫米的尖峰都被移除。由此产生的样本被称为主要样本,由 1030 名受试者组成(年龄范围 22-37 岁,555 名女性,935 名右撇子,平均年龄 = 28.7 岁)。

2.3 一般认知能力(GCA)

GCA作为12种认知测量的潜在 g 因子(表 1)。g因子的计算方法如Dubois等人所述,使用基于Schmid-Leiman变换的简化双因子分析。

表1 用于计算潜在 g 因子作为 GCA 估计值的认知测试和测量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值