Science Avances:缺失的第三维度—白质BOLD信号的功能相关性

1. 摘要

磁共振成像(MRI)的血氧合水平依赖性(BOLD)信号之间的相关性被用来推断不同脑区之间的功能连接,但它们无法描述白质是如何参与大脑网络的。最近,有证据表明,白质中的BOLD信号可以被可靠地检测到,并受到神经活动的调节。我们引入了来自每对灰质(节点)和白质束(边缘)的BOLD信号之间的三方相关性(连接),以定义通过每个白质束的配对灰质连接。例如,使用来自公开数据库的MRI图像,我们发现三方连接受到年龄的影响。通过整合来自白质的功能MRI信号作为网络分析的第三个组成部分,可以获得更全面的脑功能描述。

2. 引言

目前的大脑功能理论认为,大脑是被组织成空间分布但相互作用的信息系统或网络,通过作为信息处理单元的灰质(GM)区域和它们之间传递神经信息的白质(WM)通路来体现。大脑内的复杂网络可以用图论来表示,其中GM区域被定义为节点,它们之间的统计关联被定义为边。对基于图论的功能磁共振成像(fMRI)获得的血氧合水平依赖性(BOLD)信号的分析表明,在绘制大脑的组织和拓扑结构方面取得了相当大的成功。然而,将大脑功能网络抽象为图在本质上是有限的,因为图表示无法揭示潜在通信路径的精确结构或功能属性。

在解剖学上,GM处理区域通过由轴突纤维组成的WM束进行物理连接,轴突纤维形成结构不同的束,以提供各种信息通信功能。WM中的轴突纤维不是被动的组织,而是积极参与神经过程,包括中继和协调不同GM区域之间的通信。WM在整个生命周期中不断进化和适应,并在人类的学习过程中起着关键的作用。WM微结构的改变改变了神经信号传递的保真度,从而改变了大脑功能,这已经在发育和衰老以及各种退行性大脑疾病中得到了证实。此外,WM还包含神经胶质细胞(主要是星形胶质细胞和少突胶质细胞),它们在神经元传递、同步和血流调节中发挥作用,可能是WM中能量使用的大部分原因。鉴于WM完整性的变化与各种疾病之间的关系,将WM通路的结构和功能特性整合到脑网络的分析中,从而可以获得对大脑功能及其紊乱的更完整的理解。

虽然WM的功能重要性现在已被广泛认识到,但在体内测量WM的功能方面一直具有挑战性。fMRI是一种通过检测BOLD信号变化来评估GM中神经活动的方法,但WM的BOLD效应一直难以捉摸。最近,有研究证明,使用适当的方法,可以可靠地检测到WM中的BOLD信号。例如,在分析与任务相关的BOLD信号时,通过考虑更合适的血流动力学响应函数,可以提高WM中对BOLD信号的检测。与功能活动相关的BOLD信号是可可靠测量的这一结论已经被许多研究证实,它们的相关性得到了一些关于各种神经系统疾病中WM fMRI信号模式差异的报告的支持。WM功能磁共振成像的这些初步进展为构建更完整的大脑网络模型提供了一种潜在的手段,其中通信通路被明确地纳入其中。

在这里,我们描述了一个分析框架,它使用从整个实质测量到的功能磁共振成像信号,提供了对大脑中信息通信的综合描述。该框架允许推导分布式结构路径对GM中信息处理单元之间的信号同步的相对贡献,从而从本质上为传统的大脑网络图描述增加了第三个维度。

3结果

我们从公开的数据库中获得了fMRI数据(见“MRI和数据处理”部分)。为了分析大脑区域之间的相互作用,我们使用了一个多图模型,该模型允许一对节点通过不止一条边连接起来。这符合神经生物学的概念,即大脑区域可能参与多种功能,并通过不同的途径相互交流,以实现不同的功能。我们无法捕捉到这种复杂性通过传统的统一模型。我们将GM划分为82个布罗德曼区,并使用标准图谱在每个大脑中定义了48个WM束。

3.1 通信模式

3.1.1 图表征

我们使用82个布罗德曼区域中的每个区域作为多重图模型中的一个节点。每对GM节点可能有48条功能路由(WM束)用于信号通信(即边缘,如图1a底部面板中的灰色虚线所示)。每个WM包最大包含82 ×(82−1)/2条边(图1a中顶部面板中的灰色虚线)。我们定义了来自每对GM区域和每个WM束的静息态fMRI信号的三重相关系数(twCC),以描述用于定义多重图中边缘的三个功能单元之间的统计关联。这就产生了一个三维(3D)GM-WM-GM相关图(图1B)。在这里,我们从二维图和一维图两个角度来讨论三维相关图。二维图是那些描述了所有GM区域对的单个WM束的twCC值的图,显示了所有GM对通过一个特定的WM路径之间的通信。每个一维图代表了所有WM束的单对GM节点的twCC值,显示了每个特定的一对GM区域如何在不同的WM束之间划分通信(参见“多图模型和三重相关”部分)

图片

图1. 三重相关网络模型的说明。(A)用于分析大脑通信网络的多图结构说明,它考虑GM区域和WM束(灰色虚线表示边缘)。(B)由三重相关分析得到的三维GM-WM-GM相关图。(C)在一对GM区域(顶部)以及一对GM区域和一个WM束(底部)之间的常见组件和非常见组件的说明。(D)(#1)三个功能单元(Ii、j、k / Gi= 0.5,Ii、j、k / Gj = 0.5,Ii、j、k / Wk = 0.5);(#2)两个功能单元(Ii、j / Gi=0.5、Ii、j / Gj = 0.5),但三个功能单元(Ii、j、k = 0)之间不存在共同组件;(#3)三个功能单元完全独立;(#4)三个功能单元是相同的。模拟被运行了1000次。(E和G)从WM #1中得到的2D图的例子(#1和#2、#3、#4和#4、#5和#6)。(F和H)从一对具有一些wm(#1、#2、#3、#3和#4)进行标准化的一维图的例子。

3.1.2 模拟

我们使用模拟来确认三重相关性来检测三个功能单元之间常见的信号成分的能力。图1C为维恩图,其中各区域表示相应区域中独立信号振幅的平方和。Ii,j(黄色阴影)表示传统脑连接研究中使用的数量,这是一对GM节点(i和j)共同的信号成分,反映了它们之间的通信。在底部面板中,Ii、j、k(黄色阴影)表示一对GM节点(i和j)和单个WM束(k)所共有的信号分量。Gi、Gj和Wk表示与每个功能单元相关联的整个信号。维恩图中的所有其他区域都代表了所有三个单元都不常见的信号成分。例如,橙色区域反映了通过其他WM束通信的同一对GM区域之间的相互作用。绿色区域描述通过WM束连接这两个GM区域和其他GM区域的通信信号。其他区域(蓝色或紫色)描述的是仅与这三个功能单元中的一个相关的通信信号,即不通信的功能活动与任何其他功能单元,和或非功能信号。我们把这些信号统称为局部信号。

我们在图1C的底部面板中为每个场景模拟合成信号(见“合成信号和三重相关的模拟”部分),以计算三个功能单元之间的常见和非常见信号分量的twCC值(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值