电商用户行为分析与挖掘(MYSQL数据分析+SPSS构建RFM模型)

前言

毫不夸张的说在中国除了婴幼儿及七八十以上的老年人,都有过网购经历。电商公司就如雨后春笋般迅速发展。了解用户的网购行为,有助于商家定品类,定营销方案等。利用数据分析与挖掘,争取做到比顾客自己还了解TA自己。

一、背景

Ⅰ 数据来源

该数据集来自The UCI Machine Learning Repository,为了更贴合我的分析目的,我自己在这个基础进行了一些修改。对不需要的数据进行了删除,添加了一些需要的数据。

Ⅱ 数据背景

该数据集是英国某电商在2010-12-01到2011-12-09的全部在线销售数据,采用的是我进行整改后的数据,包含541904个样本和九个特征值,分别是发票编号,商品品类,购买日期,购买时间,数量,单价,总价,客户编号,国家。发票编号前面有c的订单为退货,数据为负的也代表退货。

Ⅲ 分析目的

1

二、探索性分析

Ⅰ 数据导入

一、创建数据表

CREATE TABLE `users` (
  `InvoiceNo` varchar(30) DEFAULT NULL,
  `GOODS` varchar(30) DEFAULT NULL,
  `Dates` date DEFAULT NULL,
  `Times` time DEFAULT NULL,
  `Quantity` int(11) DEFAULT NULL,
  `UnitPrice` float DEFAULT NULL,
  `Total` float DEFAULT NULL,
  `CustomerID` varchar(30) DEFAULT NULL,
  `Country` varchar(30) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8

二、插入数据

LOAD DATA INFILE 'D:UsersBehavior.csv'  
INTO TABLE users  
CHARACTER SET  utf8  
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '"'  
LINES TERMINATED BY '\n'
ignore 1 lines; 

Ⅱ 数据类型


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值