Sklearn.metrics评估方法

混淆矩阵

混淆矩阵又称误差矩阵,针对预测值和真实值之间的关系,我们可以将样本分为四个部分,分别是: 真正例(True Positive,TP):预测值和真实值都为1 假正例(False Positive,FP):预测值为1,真实值为0 真负例(True Negative,TN):预测值与真实值都为0 假负例(False Negative,FN):预测值为0,真实值为1
假定一个实验有 P个positive实例,在某些条件下有 N 个negative实例。那么上面这四个输出可以用下面的偶然性表格(或混淆矩阵)来表示:
在这里插入图片描述
混淆矩阵的API

from sklearn.metrics import confusion_matrix 
confusion_matrix = confusion_matrix(y_test, y_predict)

在这里插入图片描述
在这里插入图片描述

分类准确率 accuracy

所有样本中被预测正确的样本的比率分类模型总体判断的准确率(包括了所有class的总体准确率)准确率的API:

from sklearn.metrics import accuracy
accuracy = accuracy_score(y_test, y_predict)

在这里插入图片描述

精确率Precision

预测为正类0的准确率:Precision=TP / ( TP + FP )

from sklearn.metrics import precision_score
precision = precision_score(y_test, y_predict)

召回率 recall

真实为0的准确率:
在这里插入图片描述
真实为1的准确率:Recall = TN/(TN+FP)
召回率API:

from sklearn.metrics import recall_score 
recall = recall_score(y_test, y_predict)

recall得到的是一个list,是每一类的召回率。

F1值

F1值用来衡量二分类模型精确度的一种指标。它同时兼顾了分类模型的准确率和召回率。F1分数可以看作是模型准确率和召回率的一种加权平均,它的最大值是1,最小值是0。
F1=2*(Precision* recall/Precision+recall)

from sklearn.metric simport f1_score 
f1_score(y_test, y_predict)

Roc曲线、AUC

TPR FPR样本中的真实正例类别总数即TP+FN
TPR即True Positive Rate,TPR = TP/(TP+FN)。
TPR:真实的正例0中,被预测为正例的比例
样本中的真实反例类别总数为FP+TN
FPR即False Positive Rate,FPR=FP/(TN+FP)。
FPR:真实的反例1中,被预测为正例的比例
**理想分类器:**TPR=1,FPR=0
截断点thresholds: 机器学习算法对test样本进行预测后,可以输出各test样本对某个类别的相似度概率。比如t1是P类别的概率为0.3,一般我们认为概率低于0.5,t1就属于类别N。这里的0.5,就是”截断点”。

ROC曲线ROC曲线越接近左上角,代表模型越好,即ACU接近1
利用ROC的其他评估标准AUC(area under thecurve),也就是ROC曲线的下夹面积,越大说明分类器越好,较大值是1。

在使用机器学习模型进行预测任务时,评估模型的性能是非常重要的。scikit-learn(sklearn)是一个常用的Python机器学习库,提供了许多评估模型性能的工具。下面介绍几个常用的评估指标和如何使用sklearn.metrics进行评估。 1. 混淆矩阵 混淆矩阵是评估分类模型性能的基本工具。它是一个N x N的矩阵,N表示分类的数目。对于二分类问题,混淆矩阵如下所示: | | 预测为正例 | 预测为反例 | | --- | --- | --- | | 真实为正例 | TP | FN | | 真实为反例 | FP | TN | 其中,TP表示真正例(True Positive)、FN表示假反例(False Negative)、FP表示假正例(False Positive)、TN表示真反例(True Negative)。 使用sklearn.metrics中的confusion_matrix函数可以方便地计算混淆矩阵。例如,假设有一个二分类模型预测结果为y_pred,真实标签为y_true,可以使用以下代码计算混淆矩阵: ``` from sklearn.metrics import confusion_matrix confusion_matrix(y_true, y_pred) ``` 2. 准确率、召回率和F1值 准确率、召回率和F1值是三个常用的评估指标。它们的计算公式如下: 准确率(Accuracy):(TP + TN) / (TP + FP + TN + FN) 召回率(Recall):TP / (TP + FN) F1值:2 * Precision * Recall / (Precision + Recall) 其中,Precision表示精确率,定义为TP / (TP + FP)。 sklearn.metrics中提供了accuracy_score、precision_score、recall_score和f1_score函数可以方便地计算这些指标。例如,可以使用以下代码计算准确率、召回率和F1值: ``` from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score accuracy = accuracy_score(y_true, y_pred) precision = precision_score(y_true, y_pred) recall = recall_score(y_true, y_pred) f1 = f1_score(y_true, y_pred) ``` 3. ROC曲线和AUC值 ROC曲线是另一个常用的评估分类模型性能的工具。ROC曲线是以假正例率(False Positive Rate,FPR)为横轴,真正例率(True Positive Rate,TPR)为纵轴绘制的曲线。使用sklearn.metrics中的roc_curve函数可以方便地计算ROC曲线。例如,可以使用以下代码计算ROC曲线: ``` from sklearn.metrics import roc_curve fpr, tpr, thresholds = roc_curve(y_true, y_pred) ``` AUC(Area Under Curve)是ROC曲线下的面积,是一个介于0和1之间的值,AUC值越大,模型性能越好。使用sklearn.metrics中的roc_auc_score函数可以方便地计算AUC值。例如,可以使用以下代码计算AUC值: ``` from sklearn.metrics import roc_auc_score auc = roc_auc_score(y_true, y_pred) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值