CIFAR10
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, optimizers, datasets, Sequential,losses
# 一 加载CIFAR10数据集
(x,y), (x_test, y_test) = datasets.cifar10.load_data()
# x的shape为(50000, 32, 32, 3) y的shape为(50000, 1),x_test的shape为(10000, 32, 32, 3),y_test的shape为(10000, 1)
# y的类别有100个,删除y的一个维度,[b,1] => [b]
y = tf.squeeze(y, axis=1)
y_test = tf.squeeze(y_test, axis=1)
print(x.shape, y.shape, x_test.shape, y_test.shape)
# 构建预处理函数
def preprocess(x, y):
# [0~1] 并将x的数值精度变为float32,y为int32
x = 2*tf.cast(x, dtype=tf.float32) / 255.-1
# x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x,y
# 训练集预处理
train_db = tf.data.Dataset.from_tensor_slices((x,y))
train_db = train_db.shuffle(50000).map(preprocess).batch(128)
# 训练20个epoch
# train_db = train_db.repeat(20)
# 测试集预处理
test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test))
test_db = test_db.map(preprocess).batch(64)
# 从训练集中采样一个Batch,观察其结构
sample = next(iter(train_db))
print("sample:", sample[0].shape, sample[1].shape,
tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))
# 二 构造VGG13模型
def main():
# 创建包含多层卷积层的列表
conv_layers = [
# Conv-Conv-Pooling单元1 64个3x3卷积核, 输入输出同大小
layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
# 高宽减半
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# Conv-Conv-Pooling单元2,输出通道提升至128,高宽大小减半
layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
# 高宽减半
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# Conv-Conv-Pooling单元3,输出通道提升至256,高宽大小减半
layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# Conv-Conv-Pooling单元4,输出通道提升至512,高宽大小减半
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# Conv-Conv-Pooling单元5,输出通道提升至512,高宽大小减半
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same')
]
# 利用前面创建的层列表构建网络容器
conv_net = Sequential(conv_layers)
# 创建3层全连接层子网络
fc_net = Sequential([
layers.Flatten(),
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(10, activation=None),
])
# build2个子网络,并打印网络参数信息
conv_net.build(input_shape=[4, 32, 32, 3])
fc_net.build(input_shape=[4, 512])
conv_net.summary()
fc_net.summary()
# 列表合并,合并2个子网络的参数
variables = conv_net.trainable_variables + fc_net.trainable_variables
# variables = fc_net.trainable_variables
loss_all = []
# 创建损失函数的类,在实际计算时直接调用类实例即可
criteon = losses.CategoricalCrossentropy(from_logits=True)
for epoch in range(300):
for step, (x, y) in enumerate(train_db):
with tf.GradientTape() as tape:
out_1 = conv_net(x)
out_2 = fc_net(out_1)
# one-hot编码
y = tf.one_hot(y, depth=10)
# 计算交叉熵损失函数,标量
loss = criteon(y, out_2)
# 自动计算梯度,关键看如何表示待优化变量
grads = tape.gradient(loss, variables)
# 自动更新参数
optimizer = optimizers.Adam(lr=1e-4)
optimizer.apply_gradients(zip(grads, variables))
# step为100次时,记录并输出损失函数结果
if step % 100 == 0:
print(step, 'loss:', float(loss))
loss_all.append(float(loss))
# step为100次时,用测试集验证模型
if step % 100 == 0:
total, total_correct = 0., 0
correct, total = 0, 0
for x, y in test_db:
out_1 = conv_net(x)
out = fc_net(out_1)
# 前向计算,获得10类别的预测分布,[b, 1064] => [b, 10]
# 真实的流程时先经过softmax,再argmax,但是由于softmax不改变元素的大小相对关系,故省去
pred = tf.argmax(out, axis=-1)
y = tf.cast(y, tf.int64)
# 统计预测正确数量
correct += float(tf.reduce_sum(tf.cast(tf.equal(pred, y), tf.float32)))
# 统计预测样本总数
total += x.shape[0]
# 计算准确率
print('test acc:', correct / total)
if __name__== '__main__' :
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
main()