预先检查系统
进入cudnn 的官网进行账号注册。
# 检查系统cuda的版本
nvcc --version
# 如果没有cudnn版本输出,则系统不存在cudnn,那么可以接着继续往下看了,如果有正常输出则系统已经安装好cudnn了
cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
# 查系统信息
cat /etc/os-release
-
如果输出包含 Ubuntu,选择 Ubuntu 列
-
如果是 Red Hat Enterprise Linux (RHEL) 或 Rocky Linux,选择对应列
-
其他 Linux 发行版(如 CentOS)通常选择 RHEL 或 Tarball
-
注:根据自己自己cuda版本已经系统信息进行选择,本文是基于cuda 12,Tarball进行演示的。
cudnn安装命令
安装到用户目录
# cd到下载安装包的目录下载需要的版本的cudnn
# cudnn-linux-x86_64-9.5.1.17_cuda12-archive.tar.xz可以根据需要将9.5.1.17换成需要安装的版本根据需要进行更改
wget https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-9.5.1.17_cuda12-archive.tar.xz
# 解压文件(替换为实际下载的文件名)
tar -xvf cudnn-linux-x86_64-9.5.1.17_cuda12-archive.tar.xz
# 创建用户级 CUDA 目录
mkdir -p ~/.local/cuda-12.3/{include,lib64}
# 复制头文件和库
cd cudnn-linux-x86_64-9.5.1.17_cuda12-archive
cp include/cudnn*.h ~/.local/cuda-12.3/include/
cp lib/libcudnn* ~/.local/cuda-12.3/lib64/
# 设置权限(确保用户可读写)
chmod -R 755 ~/.local/cuda-12.3
配置环境变量
在 ~/.bashrc 或 ~/.zshrc 末尾添加:
export CUDA_HOME=$HOME/.local/cuda-12.3
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
export PATH=$CUDA_HOME/bin:$PATH
生效配置
source ~/.bashrc
验证安装
# 检查 cuDNN 版本
cat ~/.local/cuda-12.3/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
# 输出示例(确认版本为 9.5.1):
#define CUDNN_MAJOR 9
#define CUDNN_MINOR 5
#define CUDNN_PATCHLEVEL 1
- 注:上面的命令是以cuda12,cudnn9.5.1.17为例进行展示的命令,需要根据自己安装的版本进行更改。
测试 JAX 调用 cuDNN
如果系统安装了jax可以根据这个进行测试,如果没有可以忽略。
import jax
print(jax.devices()) # 应输出 GPU 设备
3144

被折叠的 条评论
为什么被折叠?



