稀疏贝叶斯学习【Sparse bayesian learning】

参考文献:An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem

传统图像恢复,例如用Gaussian 噪声模型+TV正则,使用的是固定参数,且对整个图像参数一致。

在压缩感知领域也是如此,(在图像恢复方面有正逆之分,例如稀疏采样MRI CT,利用压缩感知原理恢复出理想图像。而另一种则是由非稀疏的图像【被系统传递函数模糊】恢复出稀疏的真实图像,例如超分辨领域STORM,SOFI,光声成像等)其L1范数的值是固定且均匀的,而事实上L1只是SBL的第一步而已。其高斯分布的噪声方差与均值不知且不均匀。

当然SBL并非如此狭隘,其是一种估计隐含参数的一种方法,十分自适应且有效,开始应用于神经网络与SVM中使信号稀疏。

具体重建算法:EM

稀疏贝叶斯学习sparse bayesian learning)是一种基于贝叶斯统计的机器学习算法,用于估计高维数据中的稀疏模型。其核心思想是通过引入稀疏先验分布,选取最优的特征子集,以获得更准确的预测结果。 稀疏贝叶斯学习的代码实现可以分为以下几个关键步骤: 1. 数据准备:首先,需要将原始数据集进行预处理,包括特征选择和特征缩放等操作,以确保数据的准确性和一致性。同时,将数据集分为训练集和测试集,用于模型的训练和评估。 2. 模型建立:建立稀疏贝叶斯学习模型,包括定义模型的参数和超参数,选择合适的先验分布和似然函数。其中,超参数的选择通常需要通过交叉验证等方法来确定。 3. 模型训练:使用训练集对模型进行训练,通过最大化后验概率或最小化损失函数,估计模型的参数和特征的稀疏性。这一过程通常需要使用迭代算法,比如变分贝叶斯推断或期望最大化算法等。 4. 模型评估:使用测试集对训练好的模型进行评估,计算模型在新样本上的预测准确率或其他性能指标。评估结果可以帮助我们判断模型的泛化能力和稳定性。 5. 模型应用:训练好的稀疏贝叶斯学习模型可以用于新样本的预测,可以应用于数据挖掘、模式识别、特征选择等领域,提高预测准确性和解释性。 总之,稀疏贝叶斯学习代码的实现包括数据准备、模型建立、模型训练、模型评估和模型应用等关键步骤。通过这些步骤,可以构建一个适应高维数据的稀疏模型,提高机器学习任务的效果。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值