最近对可解释性平台Captum
进行了实际操作。这是Facebook 发布的一个基于 Pytorch 的模型解释库。该库为许多新的算法(如:ResNet、BERT、一些语义分割网络等)提供了解释性,帮助大家更好地理解对模型预测结果产生作用的具体特征、神经元及神经网络层。针对图像分类问题,其可以快速定位影响结果的一些像素点,并进行可视化展现;而对于文本翻译等问题,能够可视化标注出不同单词的重要性,以及利用heatmap展示单词之间的相关性等。
1. 安装
首先是安装,其实只要电脑符合前置要求,安装起来非常简单。
- Python >= 3.6
- PyTorch >= 1.2
Conda的安装方法:
conda install captum -c pytorch
Pip的安装方法:
pip install captum
上面两种方法直接在命令行中运行即可。下面我们分别从结构化数据、非结构化数据(图像与文本)来看看目前的一些工作如何说明可解释性问题。本博客主要内容来源于官方教程(Captum Tutorials)。
2. 结构化数据
以泰坦尼克号数据集(