可解释性深度学习工具Captum轻度体验

最近对可解释性平台Captum进行了实际操作。这是Facebook 发布的一个基于 Pytorch 的模型解释库。该库为许多新的算法(如:ResNet、BERT、一些语义分割网络等)提供了解释性,帮助大家更好地理解对模型预测结果产生作用的具体特征、神经元及神经网络层。针对图像分类问题,其可以快速定位影响结果的一些像素点,并进行可视化展现;而对于文本翻译等问题,能够可视化标注出不同单词的重要性,以及利用heatmap展示单词之间的相关性等。


1. 安装

首先是安装,其实只要电脑符合前置要求,安装起来非常简单。

  • Python >= 3.6
  • PyTorch >= 1.2

Conda的安装方法:

conda install captum -c pytorch

Pip的安装方法:

pip install captum

上面两种方法直接在命令行中运行即可。下面我们分别从结构化数据、非结构化数据(图像与文本)来看看目前的一些工作如何说明可解释性问题。本博客主要内容来源于官方教程(Captum Tutorials)。


2. 结构化数据

以泰坦尼克号数据集(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值