图机器学习——5.2 图神经网络:GNN的构建与训练

1. GNN的构建

我们将节点的邻居定义为可计算的图,图神经网络的主要想法是:每一个节点可以从周围的邻居中汇聚信息,而这个汇聚的方式就是通过神经网络来进行。以下图为例,我们来进行解释:

首先以节点A为目标节点,其邻居为B, C, D,那么A的信息就由B, C, D进行汇聚;接着进行递归,B的信息来源于A, C(由于是无向图,因此A也需要进行考虑,下面类似);C的信息来源于A, B, E, F;D又来源于A。因此得到上右图所示的网络。

接着我们考虑所有的节点,均作为目标节点,构建一个这样的传递模型。

这种传递模型可以为任意深度,且有如下几个性质:

  • 节点在每一层都有嵌入(embedding);
  • 节点 v v v 的第 0 层的嵌入是其输入特征, x v x_{v} xv
  • k k k层的嵌入从 k k k 的邻居节点( k − 1 k-1 k1层)获取信息。

下面详细考虑每一层中具体的网络结构与更新迭代公式。

h v ( k + 1 ) = σ ( W k ∑ u ∈ N ( v ) h u ( k ) ∣ N ( v ) ∣ + B k h v ( k ) ) , ∀ k ∈ { 0 , … , K − 1 } \mathrm{h}_{v}^{(k+1)}=\sigma\left(\mathrm{W}_{k} \sum_{u \in \mathrm{N}(v)} \frac{\mathrm{h}_{u}^{(k)}}{|\mathrm{N}(v)|}+\mathrm{B}_{k} \mathrm{h}_{v}^{(k)}\right), \forall k \in\{0, \ldots, K-1\} hv(k+1)=σWkuN(v)N(v)hu(k)+Bkhv(k),k{ 0,,K1}

初始层为节点的输入特征: h v 0 = x v \mathrm{h}_{v}^{0}=\mathrm{x}_{v} hv0=x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值