贝叶斯多层先验分布

什么是多层先验分布?

所给定的先验分布中超参数难以确定时,可以对超参数再给出一个先验,第二个先验称为超先验。由先验和超先验决定的一个新先验就称为多层先验。

简单来说,就是对你之前原本的先验分布上,再假设一层先验分布,这就是两层先验分布。(当然如果不嫌麻烦,可以无穷层的orz…)


例:

我们以一个例子来说明:
设某产品的不合格率为 θ θ

  • θ θ 的先验为 π1(θ|λ)=U(0,λ) π 1 ( θ | λ ) = U ( 0 , λ ) .
  • λ λ 的超先验为 π2(λ)=U(0.1,0.5) π 2 ( λ ) = U ( 0.1 , 0.5 ) .

利用边际分布计算公式,可得 θ θ 的先验为

π(θ)=Λπ1(θ|λ)π2(λ)dλ π ( θ ) = ∫ Λ π 1 ( θ | λ ) π 2 ( λ ) d λ

在此例中

π(θ)=10.50.10.50.1λ1I(0,λ)(θ)dλ π ( θ ) = 1 0.5 − 0.1 ∫ 0.1 0.5 λ − 1 I ( 0 , λ ) ( θ ) d λ

即当 0<θ<0.1 0 < θ < 0.1 时,
π(θ)=10.40.50.1λ1dλ=2.5ln5 π ( θ ) = 1 0.4 ∫ 0.1 0.5 λ − 1 d λ = 2.5 ln ⁡ 5

0.1θ<0.5 0.1 ⩽ θ < 0.5 时,
π(θ)=2.5θ0.5λ1dλ=2.5(ln0.5lnθ) π ( θ ) = 2.5 ∫ 0.5 θ λ − 1 d λ = 2.5 ( ln ⁡ 0.5 − ln ⁡ θ )

0.5θ1 0.5 ⩽ θ ⩽ 1 时,
π(θ)=0 π ( θ ) = 0

在理论上没有限制多层先验只分两步,可以是三步或更多步,但在实际应用中多于两步的先验是罕见的,对第二步先验 π2(λ) π 2 ( λ ) 用主观概率或用历史数据给出是有困难的,因为人常是不能观察的,甚至连间接观察都是难以进行的。很多人用无信息先验作为第二步的先验。因为第二步先验即使决定有偏差,而导致错误结果的危险性更小一些,相对说来,第一步先验更为重要。

多层先验常常是在这样一种场合使用,当一步给出先验 π(θ) π ( θ ) 没有把握时。那用两步先验要比强行用一步先验所冒风险要小一些。但是实际的应用上,就个人而言,多层先验分布应用的地方真的不多,甚至可以说很少,因为一层先验能解决的问题为什么要用到两层呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值