什么是多层先验分布?
所给定的先验分布中超参数难以确定时,可以对超参数再给出一个先验,第二个先验称为超先验。由先验和超先验决定的一个新先验就称为多层先验。
简单来说,就是对你之前原本的先验分布上,再假设一层先验分布,这就是两层先验分布。(当然如果不嫌麻烦,可以无穷层的orz…)
例:
我们以一个例子来说明:
设某产品的不合格率为
θ
θ
,
- θ θ 的先验为 π1(θ|λ)=U(0,λ) π 1 ( θ | λ ) = U ( 0 , λ ) .
- λ λ 的超先验为 π2(λ)=U(0.1,0.5) π 2 ( λ ) = U ( 0.1 , 0.5 ) .
利用边际分布计算公式,可得
θ
θ
的先验为
在此例中
即当 0<θ<0.1 0 < θ < 0.1 时,
当 0.1⩽θ<0.5 0.1 ⩽ θ < 0.5 时,
当 0.5⩽θ⩽1 0.5 ⩽ θ ⩽ 1 时,
在理论上没有限制多层先验只分两步,可以是三步或更多步,但在实际应用中多于两步的先验是罕见的,对第二步先验 π2(λ) π 2 ( λ ) 用主观概率或用历史数据给出是有困难的,因为人常是不能观察的,甚至连间接观察都是难以进行的。很多人用无信息先验作为第二步的先验。因为第二步先验即使决定有偏差,而导致错误结果的危险性更小一些,相对说来,第一步先验更为重要。
多层先验常常是在这样一种场合使用,当一步给出先验 π(θ) π ( θ ) 没有把握时。那用两步先验要比强行用一步先验所冒风险要小一些。但是实际的应用上,就个人而言,多层先验分布应用的地方真的不多,甚至可以说很少,因为一层先验能解决的问题为什么要用到两层呢?