泛函分析 第一章 度量空间

参考来源于《泛函分析讲义》,张恭庆,林源渠编著,北京大学出版社

第一章 度量空间

压缩映像原理

定义1.1.1 距离

X \mathscr X X上定义一个双变量实值函数 ρ ( x , y ) \rho(x,y) ρ(x,y)满足下列三个条件:
(1) ρ ( x , y ) = 0 ⇔ x = y \rho(x,y)=0 \Leftrightarrow x=y ρ(x,y)=0x=y
(2) ρ ( x , y ) = ρ ( y , x ) \rho(x,y)=\rho(y,x) ρ(x,y)=ρ(y,x)
(3) ρ ( x , z ) = ρ ( x , y ) + ρ ( y , z ) \rho(x,z)=\rho(x,y)+\rho(y,z) ρ(x,z)=ρ(x,y)+ρ(y,z)
ρ \rho ρ叫做 X \mathscr X X上的一个距离,以 ρ \rho ρ为距离的距离空间 X \mathscr X X记做 ( X , ρ ) (\mathscr X, \rho) (X,ρ)

定义1.1.3 收敛

距离空间 ( X , ρ ) (\mathscr X, \rho) (X,ρ)上的点列 { x n } \{x_n\} {xn}收敛到 x 0 x_0 x0是指 ρ ( x n , x 0 ) → 0 ( n → ∞ ) \rho(x_n,x_0)\to 0(n\to\infty) ρ(xn,x0)0(n),记做 lim ⁡ n → ∞ x n = x 0 \lim\limits_{n\to\infty}x_n=x_0 nlimxn=x0

定义1.1.4 闭集

E E E为度量空间 ( X , ρ ) (\mathscr X, \rho) (X,ρ)中的子集。若 ∀ { x n } ⊂ E \forall \{x_n\}\subset E {xn}E x n → x 0 x_n\to x_0 xnx0,则 x 0 ∈ E x_0\in E x0E

定义1.1.5 基本列与完备

(1) ρ ( x n , x m ) → 0 ( n , m → ∞ ) \rho(x_n,x_m)\to0(n,m\to\infty) ρ(xn,xm)0(n,m)
(2) ∀ ε > 0 , ∃ N ( ε ) s . t . m , n ⩾ N ( ε ) ⇒ ρ ( x n , x m ) < ε \forall\varepsilon>0,\exists N(\varepsilon) s.t. m,n\geqslant N(\varepsilon)\Rightarrow\rho(x_n,x_m)<\varepsilon ε>0,N(ε)s.t.m,nN(ε)ρ(xn,xm)<ε
所有收敛列都是基本列
所有基本列都收敛,则空间完备
完备度量空间的闭子集必完备

定义1.1.8 连续

T : ( X , ρ ) → ( Y , r ) T:(\mathscr X,\rho)\to(\mathscr Y, r) T:(X,ρ)(Y,r)为连续映射
(1) ρ ( x n , x 0 ) → 0 ⇒ r ( T ( x n ) , T ( x 0 ) ) → 0 \rho(x_n,x_0)\to0\Rightarrow r(T(x_n),T(x_0))\to0 ρ(xn,x0)0r(T(xn),T(x0))0
(2) ∀ ε > 0 , ∀ x 0 ∈ X , ∃ δ = δ ( x 0 , ε ) , s . t . ρ ( x , x 0 ) < δ ⇒ r ( T ( x ) , T ( x 0 ) ) < ε ( ∀ x ∈ X ) \forall\varepsilon>0, \forall x_0\in\mathscr X,\exists\delta=\delta(x_0,\varepsilon),s.t.\rho(x,x_0)<\delta\Rightarrow r(T(x),T(x_0))<\varepsilon\qquad(\forall x \in \mathscr X) ε>0,x0X,δ=δ(x0,ε),s.t.ρ(x,x0)<δr(T(x),T(x0))<ε(xX)
(3) lim ⁡ n → ∞ x n = x 0 ⇒ lim ⁡ n → ∞ T ( x n ) = T ( lim ⁡ n → ∞ x n ) = T ( x 0 ) \lim\limits_{n\to\infty}x_n=x_0 \Rightarrow \lim\limits_{n\to\infty}T(x_n)=T(\lim\limits_{n\to\infty}x_n)=T(x_0) nlimxn=x0nlimT(xn)=T(nlimxn)=T(x0)

定义1.1.10 压缩映射

T : ( X , ρ ) → ( X , ρ ) T:(\mathscr X, \rho)\to(\mathscr X,\rho) T:(X,ρ)(X,ρ)是一个压缩映射,如果存在 0 < α < 1 , s . t . ρ ( T ( x ) , T ( y ) ) ⩽ α ρ ( x , y ) ( ∀ x , y ∈ X ) 0<\alpha<1,s.t.\rho(T(x),T(y))\leqslant\alpha\rho(x,y)\quad(\forall x,y\in\mathscr X) 0<α<1,s.t.ρ(T(x),T(y))αρ(x,y)(x,yX)

定理1.1.11 Banach不动点定理——压缩映像原理

( X , ρ ) (\mathscr X, \rho) (X,ρ)是一个完备的距离空间, T T T ( X , ρ ) (\mathscr X, \rho) (X,ρ)到自身的一个压缩映射,则 T T T X \mathscr X X上存在唯一不动点。

注:
(1) α = 0 \alpha=0 α=0时也成立
(2) α = 1 \alpha=1 α=1时为弱压缩映射,此时 T T T可以有不动点,也可以没有不动点

完备化

定义1.2.1 等距同构

( X , ρ ) , ( X 1 , ρ 1 ) (\mathscr X,\rho),(\mathscr X_1,\rho_1) (X,ρ),(X1,ρ1)是两个度量空间,如果存在映射 φ : X → X 1 \varphi:\mathscr X\to\mathscr X_1 φ:XX1满足
(1) φ \varphi φ是满射
(2) ρ ( x , y ) = ρ 1 ( φ ( x ) , φ ( y ) ) ( ∀ x , y ∈ X ) \rho(x,y)=\rho_1(\varphi(x), \varphi(y))\quad(\forall x,y\in\mathscr X) ρ(x,y)=ρ1(φ(x),φ(y))(x,yX)
则称 ( X , ρ ) 和 ( X 1 , ρ 1 ) (\mathscr X,\rho)和(\mathscr X_1,\rho_1) (X,ρ)(X1,ρ1)是等距同构的,并称 φ \varphi φ为等距同构映射,有时简称等距同构。
注: 由(2)还可以推出 φ \varphi φ是单射。

定义1.2.2 稠密性

( X , ρ ) (\mathscr X,\rho) (X,ρ)是度量空间,集合 E ⊂ X E\subset\mathscr X EX为在 X \mathscr X X的稠密子集
⇔ ∀ x ∈ X , ∀ ε > 0 , ∃ z ∈ E , s . t . ρ ( x , z ) < ε ⇔ ∀ x ∈ X , ∃ { x n } ⊂ E , s . t . x n → x ⇔ ∀ ε > 0 , 有 X = ⋃ z ∈ E B ( z , ε ) \begin{aligned} &\Leftrightarrow\forall x\in\mathscr X,\forall\varepsilon>0,\exists z\in E,s.t.\quad \rho(x,z)<\varepsilon \\ &\Leftrightarrow\forall x\in\mathscr X,\exists\{x_n\}\subset E,s.t.\quad x_n\to x \\ &\Leftrightarrow\forall\varepsilon>0,有\mathscr X=\bigcup\limits_{z\in E}\mathcal B(z,\varepsilon) \end{aligned} xX,ε>0,zE,s.t.ρ(x,z)<εxX,{xn}E,s.t.xnxε>0X=zEB(z,ε)

定义1.2.4 完备化空间

包含给定度量空间 ( X , ρ ) (\mathscr X,\rho) (X,ρ)的最小的完备度量空间成为 X \mathscr X X的完备化空间。

最小的完备度量空间不是唯一的。

若要求度量空间在其完备化空间中稠(在等距同构意义下),则可证其完备化度量空间必在等距同构下唯一。

命题1.2.5
( X 1 , ρ 1 ) (\mathscr X_1,\rho_1) (X1,ρ1)是一个以 ( X , ρ ) (\mathscr X,\rho) (X,ρ)为子空间的完备度量空间,并且 X \mathscr X X等距同构于 X 1 \mathscr X_1 X1的一个稠子集,则 X 1 \mathscr X_1 X1 X \mathscr X X的唯一完备化空间。

定理1.2.6
每一个度量空间有一个其自身在其中稠的唯一完备化空间。

例1.2.7
ρ ( x , y ) = max ⁡ a ⩽ t ⩽ b ∣ x ( t ) − y ( t ) ∣ \rho(x,y)=\max\limits_{a\leqslant t \leqslant b}|x(t)-y(t)| ρ(x,y)=atbmaxx(t)y(t),由weitrstrass定理, P [ a , b ] P[a,b] P[a,b] C [ a , b ] C[a,b] C[a,b]中稠,且 ( C [ a , b ] , ρ ) (C[a,b],\rho) (C[a,b],ρ)完备。

例1.2.8
ρ 1 ( x , y ) = ∫ a b ∣ x ( t ) − y ( t ) ∣ d t \rho_1(x,y)=\int_a^b|x(t)-y(t)|dt ρ1(x,y)=abx(t)y(t)dt C [ a , b ] C[a,b] C[a,b] L 1 [ a , b ] L^1[a,b] L1[a,b]中稠,且 ( L 1 [ a , b ] , ρ 1 ) (L^1[a,b],\rho_1) (L1[a,b],ρ1)完备。

列紧集

有界

( X , ρ ) (\mathscr X,\rho) (X,ρ)是一个距离空间,A是 X \mathscr X X的子集。如果 ∃ x 0 ∈ X \exists x_0 \in\mathscr X x0X r > 0 r>0 r>0使得 A ⊂ B ( x 0 , r ) A\subset\mathcal B(x_0,r) AB(x0,r),则称A是有界的。

定义1.3.1 列紧

( X , ρ ) (\mathscr X,\rho) (X,ρ)是一个距离空间, A A A X \mathscr X X的子集。如果 A A A的任意点列在 X \mathscr X X中有收敛子列,则称 A A A列紧的。若这个子列还收敛到 A A A中的点,则称 A A A自列紧的。如果空间 X \mathscr X X是列紧的,则称 X \mathscr X X列紧空间

定义1.3.5 ε \varepsilon ε

ε > 0 , N ⊂ M \varepsilon>0,N\subset M ε>0,NM
M ⊂ ⋃ y ∈ N B ( y , ε ) M\subset\bigcup\limits_{y\in N}\mathcal B(y,\varepsilon) MyNB(y,ε)
N N N M M M ε \varepsilon ε网。若 N N N有穷集,则为有穷 ε \varepsilon ε

定义1.3.6 完全有界

M M M完全有界,则 ∀ ε > 0 \forall\varepsilon>0 ε>0,都存在 M M M的一个有穷 ε \varepsilon ε

定理1.3.7 Hausdorff

列紧集 ⇒ \Rightarrow 完全有界 ⇒ \Rightarrow 有界,完全有界 ⟹ 完 备 \stackrel{完备}\Longrightarrow 列紧集

定义1.3.8 可分

一个距离空间若有可数个稠密子集,则称为是可分的。
完全有界的距离空间是可分的。

定义1.3.10 紧

拓扑空间 X \mathscr X X中,称集合 M M M是紧的,如果 X \mathscr X X中每个覆盖 M M M的开集族中都有有穷个开集覆 M M M
⇔ \Leftrightarrow 自列紧

定义1.3.14 一致有界、等度连续(一致连续)

M M M紧的距离空间, F ⊂ C ( M ) F\subset C(M) FC(M)。若 ∃ M 1 > 0 \exists M_1>0 M1>0,使得 ∣ φ ( x ) ∣ ⩽ M 1 ( ∀ x ∈ M , ∀ φ ∈ F ) |\varphi(x)|\leqslant M_1\quad(\forall x\in M,\forall\varphi\in F) φ(x)M1(xM,φF)则F是一致有界的。
等价于 F F F C ( M ) C(M) C(M)的有界集。
如果 ∀ ε > 0 , ∃ δ ( ε ) > 0 \forall\varepsilon>0,\exists \delta(\varepsilon)>0 ε>0δ(ε)>0,使得 ∣ φ ( x 1 ) − φ ( x 2 ) ∣ < ε ( ∀ x 1 , x 2 ∈ M , ρ ( x 1 , x 2 ) < δ , ∀ φ ∈ F ) |\varphi(x_1)-\varphi(x_2)|<\varepsilon\quad(\forall x_1,x_2\in M,\rho(x_1,x_2)<\delta,\forall\varphi\in F) φ(x1)φ(x2)<ε(x1,x2M,ρ(x1,x2)<δ,φF),则称 F F F等度连续的。

定理1.3.15 Arzela-Ascoli

F ⊂ C ( M ) F\subset C(M) FC(M)是一个列紧集 ⟺ F \Longleftrightarrow F F为一致有界且等度连续的函数族。

线性赋范空间

定义1.4.1

线性流形 E = E 0 + x 0 , E 0 E=E_0+x_0,E_0 E=E0+x0,E0为线性子空间
线性流形还是线性子空间 ⇔ x 0 ∈ E 0 \Leftrightarrow x_0\in E_0 x0E0
线性包 { x λ } \{x_\lambda\} {xλ}的有穷线性组合,也称 { x λ } \{x_\lambda\} {xλ}张成的线性子空间,记为 s p a n { x λ } span\{x_\lambda\} span{xλ}
s p a n { x λ } = ⋂ { x λ } ⊂ M , M 为 线 性 子 空 间 M span\{x_\lambda\}=\bigcap_{\{x_\lambda\}\subset M,M为线性子空间}M span{xλ}={xλ}M,M线M

定义1.4.2 准范数

∣ ∣ ⋅ ∣ ∣ : X → R 1 ||\cdot||:\mathscr{X}\to\mathbb{R}^1 :XR1满足条件:
(1) ∣ ∣ x ∣ ∣ ⩾ 0 ( ∀ x ∈ X ) ; ∣ ∣ x ∣ ∣ = 0 ⇔ x = θ ||x||\geqslant0(\forall x\in\mathscr{X});||x||=0\Leftrightarrow x=\theta x0(xX);x=0x=θ
(2) ∣ ∣ x + y ∣ ∣ ⩽ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ( ∀ x , y ∈ X ) ||x+y||\leqslant||x||+||y||(\forall x,y\in\mathscr{X}) x+yx+y(x,yX)
(3) ∣ ∣ − x ∣ ∣ = ∣ ∣ x ∣ ∣ ( ∀ x ∈ X ) ||-x||=||x||(\forall x\in\mathscr{X}) x=x(xX)
(4) lim ⁡ a n → 0 ∣ ∣ a n x ∣ ∣ = 0 , lim ⁡ ∣ ∣ x n → 0 ∣ ∣ ∣ ∣ a x n ∣ ∣ = 0 \lim\limits_{a_n\to0}||a_nx||=0, \lim\limits_{||x_n\to0||}||ax_n||=0 an0limanx=0,xn0limaxn=0

X \mathscr{X} X赋予准范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| 后称为 F ∗ F^* F空间
完备的 F ∗ F^* F空间称为 F F F空间

定义1.4.3 范数

∣ ∣ ⋅ ∣ ∣ : X → R 1 ||\cdot||:\mathscr{X}\to\mathbb{R}^1 :XR1满足条件:
(1) ∣ ∣ x ∣ ∣ ⩾ 0 ( ∀ x ∈ X ) ; ∣ ∣ x ∣ ∣ = 0 ⇔ x = θ ||x||\geqslant0(\forall x\in\mathscr{X});||x||=0\Leftrightarrow x=\theta x0(xX);x=0x=θ(正定性)
(2) ∣ ∣ x + y ∣ ∣ ⩽ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ( ∀ x , y ∈ X ) ||x+y||\leqslant||x||+||y||(\forall x,y\in\mathscr{X}) x+yx+y(x,yX)(三角不等式)
(3) ∣ ∣ a x ∣ ∣ = ∣ a ∣ ∣ ∣ x ∣ ∣ ( ∀ a ∈ K , ∀ x ∈ X ) ||ax||=|a|||x||(\forall a\in\mathbb{K},\forall x\in\mathscr{X}) ax=ax(aK,xX)(齐次性)

X \mathscr{X} X赋予范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| 后称为 B ∗ B^* B空间
完备的 B ∗ B^* B空间称为 B B B空间或Banach空间。

L p L^p Lp范数: ( ∫ Ω ∣ u ( x ) ∣ p d μ ) 1 p (\int_{\Omega}|u(x)|^pd\mu)^\frac{1}{p} (Ωu(x)pdμ)p1
l p l^p lp范数: ( ∑ n = 1 ∞ ∣ u ( x ) ∣ p ) 1 p (\sum_{n=1}^{\infty}|u(x)|^p)^\frac{1}{p} (n=1u(x)p)p1
L ∞ L^{\infty} L范数: inf ⁡ μ ( E 0 ) = 0 , E 0 ⊂ Ω ( sup ⁡ x ∈ Ω ∖ E 0 ∣ u ( x ) ∣ ) \inf\limits_{\mu(E_0)=0,E_0\subset\Omega}(\sup\limits_{x\in\Omega\setminus E_0}|u(x)|) μ(E0)=0,E0Ωinf(xΩE0supu(x)),又记 e s s sup ⁡ x ∈ Ω ∣ u ( x ) ∣ ess \sup\limits_{x\in\Omega}|u(x)| essxΩsupu(x)

定义1.4.15 范数等价

∣ ∣ ⋅ ∣ ∣ 2 ||\cdot||_2 2 ∣ ∣ ⋅ ∣ ∣ 1 ||\cdot||_1 1强,是指
∣ ∣ x n ∣ ∣ 2 → 0 ⇒ ∣ ∣ x n ∣ ∣ 1 → 0 ( 当 n → ∞ ) ||x_n||_2\to0\Rightarrow||x_n||_1\to0\qquad(当n\to\infty) xn20xn10(n)
如果 ∣ ∣ ⋅ ∣ ∣ 2 ||\cdot||_2 2 ∣ ∣ ⋅ ∣ ∣ 1 ||\cdot||_1 1强且 ∣ ∣ ⋅ ∣ ∣ 1 ||\cdot||_1 1 ∣ ∣ ⋅ ∣ ∣ 2 ||\cdot||_2 2强,则称 ∣ ∣ ⋅ ∣ ∣ 1 ||\cdot||_1 1 ∣ ∣ ⋅ ∣ ∣ 2 ||\cdot||_2 2等价。
为了 ∣ ∣ ⋅ ∣ ∣ 2 ||\cdot||_2 2 ∣ ∣ ⋅ ∣ ∣ 1 ||\cdot||_1 1强,必需且仅须存在常数 C > 0 C>0 C>0,使得 ∣ ∣ x ∣ ∣ 1 ⩽ C ∣ ∣ x ∣ ∣ 2 ( ∀ x ∈ X ) ||x||_1\leqslant C||x||_2\quad(\forall x\in\mathscr{X}) x1Cx2(xX)
所以 ∣ ∣ ⋅ ∣ ∣ 1 ||\cdot||_1 1 ∣ ∣ ⋅ ∣ ∣ 2 ||\cdot||_2 2等价必须且仅须存在常数 C 1 , C 2 > 0 C_1,C_2>0 C1,C2>0,使得 C 1 ∣ ∣ x ∣ ∣ 1 ⩽ ∣ ∣ x ∣ ∣ 2 ⩽ C 2 ∣ ∣ x ∣ ∣ 1 C_1||x||_1\leqslant ||x||_2\leqslant C_2||x||_1 C1x1x2C2x1
注:
(1) 有穷维任意两个范数等价,无穷维不成立
(2) 相同维度的两个有穷维线性赋范空间在代数上是同构的,在拓扑上是同胚的
(3) 有穷维 B ∗ \mathcal{B}^* B空间必是 B \mathcal{B} B空间
(4) B ∗ B^* B空间上的任意有穷维子空间必是闭子空间

定义1.4.21 次线性泛函

P : X → R 1 P:\mathscr{X}\to\mathbb{R}^1 P:XR1满足条件:
(1) P ( x + y ) ⩽ P ( x ) + P ( y ) ( ∀ x , y ∈ X ) P(x+y)\leqslant P(x)+P(y)(\forall x,y\in\mathscr{X}) P(x+y)P(x)+P(y)(x,yX)(次可加性)
(2) P ( λ x ) = λ P ( x ) ( ∀ λ > 0 , ∀ x ∈ X ) P(\lambda x)=\lambda P(x)(\forall \lambda>0,\forall x\in\mathscr{X}) P(λx)=λP(x)(λ>0,xX)(正齐次性)
则称 P P P X \mathscr{X} X上的一个次线性泛函

P P P还满足 P ( x ) ⩾ 0 ( ∀ x ∈ X ) P(x)\geqslant0(\forall x\in\mathscr{X}) P(x)0(xX)并且(2)是齐次性,即 P ( a x ) = ∣ a ∣ P ( x ) ( ∀ a ∈ K , ∀ x ∈ X ) P(ax)=|a|P(x)(\forall a\in\mathbb{K},\forall x\in\mathscr{X}) P(ax)=aP(x)(aK,xX),则称 P P P是一个半范数半模

P P P是有穷维 B ∗ B^* B空间 X \mathscr{X} X上的一个次线性泛函,如果 P ( x ) ⩾ 0 ( ∀ x ∈ x ) P(x)\geqslant0(\forall x\in\mathscr{x}) P(x)0(xx),并且 P ( x ) = 0 ⇔ x = θ P(x)=0\Leftrightarrow x=\theta P(x)=0x=θ,则存在正常数 c 1 , c 2 c_1,c_2 c1,c2使得 c 1 ∣ ∣ x ∣ ∣ ⩽ P ( x ) ⩽ c 2 ∣ ∣ x ∣ ∣ ( ∀ x ∈ X ) c_1||x||\leqslant P(x)\leqslant c_2||x|| \qquad(\forall x\in\mathscr{X}) c1xP(x)c2x(xX)

定义1.4.23 最佳逼近

X \mathscr{X} X是一个 B ∗ B^* B空间,若 e 1 , e 2 , . . . , e n e_1,e_2,...,e_n e1,e2,...,en X \mathscr{X} X中给定的向量组,则 ∀ x ∈ X \forall x\in\mathscr{X} xX,存在着最佳逼近系数 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn满足
∣ ∣ x − ∑ i = 1 n λ i e i ∣ ∣ = min ⁡ a ∈ K n ∣ ∣ x − ∑ i = 1 n a i e i ∣ ∣ ||x-\sum_{i=1}^{n}\lambda_ie_i||=\min\limits_{a\in\mathbb{K}^n}||x-\sum_{i=1}^{n}a_ie_i|| xi=1nλiei=aKnminxi=1naiei

若记 M : = s p a n e 1 , e 2 , . . . , e n ; ρ ( x , M ) : = inf ⁡ y ∈ M ∣ ∣ x − y ∣ ∣ ; x o : = ∑ i = 1 n λ i e i M:=span{e_1,e_2,...,e_n};\rho(x,M):=\inf\limits_{y\in M}||x-y||;x_o:=\sum_{i=1}^n\lambda_ie_i M:=spane1,e2,...,en;ρ(x,M):=yMinfxy;xo:=i=1nλiei,则有 ρ ( x , x 0 ) = ρ ( x . M ) \rho(x,x_0)=\rho(x.M) ρ(x,x0)=ρ(x.M)。称 x 0 ∈ M x_0\in M x0M x x x M M M上的最佳逼近元。在 B ∗ B^* B空间中,任意指定元素在给定的有限维子空间上的最佳逼近元总是存在的,但唯一性需要依靠 B ∗ B^* B空间 X \mathscr{X} X模的性质

定义1.4.24 严格凸

B ∗ B^* B空间 ( X , ∣ ∣ ⋅ ∣ ∣ ) (\mathscr{X},||\cdot||) (X,)是严格凸的,是指 ∀ x , y ∈ X , x ≠ y \forall x,y\in\mathscr{X},x\neq y x,yX,x=y必有 ∣ ∣ x ∣ ∣ = ∣ ∣ y ∣ ∣ = 1 ⇒ ∣ ∣ a x + b y ∣ ∣ < 1 ( ∀ a , b > 0 , a + b = 1 ) ||x||=||y||=1\Rightarrow||ax+by||<1\qquad(\forall a,b>0,a+b=1) x=y=1ax+by<1(a,b>0,a+b=1)

∀ a , b \forall a,b a,b可以改成 ∃ a 0 , b 0 \exists a_0,b_0 a0,b0

严格凸则存在唯一最佳逼近系数
严格凸强烈依赖于所考虑的范数

引理1.4.31 F.Riesz引理

如果 X 0 \mathscr{X}_0 X0 B ∗ B^* B空间 X \mathscr{X} X的一个真闭子空间,那么对 ∀ 0 < ε < 1 , ∃ y ∈ X \forall 0<\varepsilon<1,\exists y\in\mathscr{X} 0<ε<1yX,使得 ∣ ∣ y ∣ ∣ = 1 ||y||=1 y=1,并且 ∣ ∣ y − x ∣ ∣ ⩾ 1 − ε ( ∀ x ∈ X 0 ) ||y-x||\geqslant1-\varepsilon(\forall x\in\mathscr{X}_0) yx1ε(xX0)

定理1.4.28 有穷维 B ∗ B^* B空间的刻画

(1) B ∗ B^* B是有穷维的 ⇔ X \Leftrightarrow\mathscr{X} X的单位球面是列紧的
(2) B ∗ B^* B是有穷维的 ⇔ X \Leftrightarrow\mathscr{X} X的单位球面任意有界集是列紧的
(3) 设 X \mathscr{X} X是有限维 B ∗ B^* B空间,则列紧集 ⇔ \Leftrightarrow 有界集
(4) 设 X \mathscr{X} X是有限维 B ∗ B^* B空间,则紧集 ⇔ \Leftrightarrow 自列紧集 ⇔ \Leftrightarrow 列紧闭集 ⇔ \Leftrightarrow 有界闭集
(5) 设 X \mathscr{X} X是有限维 B ∗ B^* B空间,集合 M ⊂ X M\subset\mathscr{X} MX是完全有界集 ⇔ M \Leftrightarrow M M有界
(6) 在 B ∗ B^* B空间中,则紧集是完全有界闭集,反之不一定成立;在 B B B空间中,紧集 ⇔ \Leftrightarrow 完全有界闭集

凸集与不动点

定义1.5.1 凸集

∀ x , y ∈ E , ∀ 0 ⩽ λ ⩽ 1 , λ x + ( 1 − λ ) y ∈ E \forall x,y \in E,\forall 0\leqslant\lambda\leqslant1, \lambda x+(1-\lambda)y\in E x,yE,0λ1,λx+(1λ)yE,则 E E E为凸集。
这个概念不要求空间有拓扑结构,但要有代数结构。
∀ λ ∈ [ 0 , 1 ] \forall\lambda\in[0,1] λ[0,1]不能减弱为 ∀ λ ∈ [ 0 , 1 ] ∩ Q \forall\lambda\in[0,1]\cap\mathbb{Q} λ[0,1]Q,可以减弱为 ∀ λ ∈ [ 0 , 1 ] ∖ Q \forall\lambda\in[0,1]\setminus\mathbb{Q} λ[0,1]Q,但不能减弱为 ∃ λ 0 ∈ [ 0 , 1 ] ∖ Q \exist\lambda_0\in[0,1]\setminus\mathbb{Q} λ0[0,1]Q

定义1.5.3 凸包、凸组合

{ E λ ∣ λ ∈ Λ } \{E_{\lambda}|\lambda\in\Lambda\} {EλλΛ}是线性空间 X \mathscr{X} X中的一族凸集,则 ⋂ λ ∈ Λ E λ \bigcap\limits_{\lambda\in\Lambda}E_{\lambda} λΛEλ也是凸集。
{ E λ ∣ λ ∈ Λ } \{E_{\lambda}|\lambda\in\Lambda\} {EλλΛ}是线性空间 X \mathscr{X} X中包含 A A A的一族凸集,则称 ⋂ λ ∈ Λ E λ \bigcap\limits_{\lambda\in\Lambda}E_{\lambda} λΛEλ A A A凸包(最小凸集),并记做co( A A A)。
∑ i = 1 n λ i x i \sum\limits^{n}_{i=1}\lambda_ix_i i=1nλixi x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn的凸组合,其中 λ i ⩾ 0 , ∑ i = 1 n λ i = 1 \lambda_i\geqslant0,\sum\limits_{i=1}^{n}\lambda_i=1 λi0,i=1nλi=1
A A A的凸包是 A A A中元素任意凸组合的全体。

定义1.5.5 Minkowski泛函

X \mathscr{X} X是线性空间, C C C X \mathscr{X} X上含有 θ \theta θ的凸子集,在 X \mathscr{X} X上规定一个取值于 [ 0 , ∞ ] [0,\infty] [0,]的函数
P ( x ) = inf ⁡ { λ > 0 ∣ x λ ∈ C } ( ∀ x ∈ X ) P(x)=\inf\{\lambda>0|\frac{x}{\lambda}\in C\}\qquad(\forall x\in\mathscr{X}) P(x)=inf{λ>0λxC}(xX)
C C C对应,称函数 P P P C C CMinkowski泛函。约定 inf ⁡ ϕ = ∞ : x ∞ = 0 , x = θ ∈ C \inf\phi=\infty: \frac{x}{\infty}=0,x=\theta\in C infϕ=:x=0,x=θC
它有以下性质:
(1) P ( x ) ∈ [ 0 , ∞ ] , P ( θ ) = 0 P(x)\in[0,\infty],P(\theta)=0 P(x)[0,],P(θ)=0
(2) P ( λ x ) = λ P ( x ) ( ∀ x ∈ X , ∀ λ > 0 ) P(\lambda x)=\lambda P(x)(\forall x\in\mathscr{X},\forall\lambda>0) P(λx)=λP(x)(xX,λ>0)(正齐次性)
(3) P ( x + y ) ⩽ P ( x ) + P ( y ) ( ∀ x , y ∈ X ) P(x+y)\leqslant P(x)+P(y) (\forall x,y\in\mathscr{X}) P(x+y)P(x)+P(y)(x,yX)(次可加性)

定义1.5.7 吸收凸集、对称凸集

吸收集: C C C为含有 θ \theta θ的凸集且 ∀ x ∈ X , ∃ λ > 0 \forall x\in\mathscr{X},\exist\lambda>0 xX,λ>0,使得 x λ ∈ C \frac{x}{\lambda}\in C λxC
对称集: x ∈ C ⇒ − x ∈ C x\in C\Rightarrow -x\in C xCxC

θ \theta θ C C C的内点,则 C C C必吸收,反之不一定成立。
若在吸收集的定义中将凸集的要求去掉,则即使 C C C为吸收的, θ \theta θ也不一定为 C C C的内点,此时 C C C不一定为凸集。例如令 C : = B ( ( 0 , 0 ) , 1 ) ∖ { ( x , x 2 ) : x ∈ R ∖ { 0 } } C:=B((0,0),1)\setminus\{(x,x^2):x\in\mathbb{R}\setminus\{0\}\} C:=B((0,0),1){(x,x2):xR{0}},则 C C C为“吸收集”。

X \mathscr{X} X为有限维 B ∗ B^* B空间,若 C ⊂ X C\subset\mathscr{X} CX为含有 θ \theta θ点的吸收凸集,则 θ \theta θ必为 C C C的内点。

C C C是吸收凸集 ⇒ \Rightarrow Minkowski泛函 P ( x ) P(x) P(x)是实值函数(不是 ∞ \infty )
C C C是对称凸集,必须 P ( x ) P(x) P(x)是实齐次的,即 P ( α x ) = ∣ α ∣ P ( x ) P(\alpha x)=|\alpha|P(x) P(αx)=αP(x)

均衡集: 复线性空间 X \mathscr{X} X的一个子集 C C C称为均衡的是指 x ∈ C ⇒ α x ∈ C ( ∀ α ∈ C , ∣ α ∣ = 1 ) x\in C\Rightarrow\alpha x\in C\quad(\forall\alpha\in\mathbb{C},|\alpha|=1) xCαxC(αC,α=1)

复线性空间 X \mathscr{X} X上的任一个均衡吸收凸集 C C C决定了这个空间上的一个半模。

X \mathscr{X} X上的一个 B ∗ B^* B空间, C C C是一个含有 θ \theta θ点的闭凸集。如果 P ( x ) P(x) P(x) C C C的Minkowski泛函,那么 P ( x ) P(x) P(x)下半连续,且有 C = { x ∈ X ∣ P ( x ) ⩽ 1 } C=\{x\in\mathscr{X}|P(x)\leqslant1\} C={xXP(x)1}
此外,如果 C C C还是有界的,此时不需要 C C C闭,那么 P ( x ) P(x) P(x)适合 P ( x ) = 0 ⇔ x = θ P(x)=0\Leftrightarrow x=\theta P(x)=0x=θ。又若 C C C θ \theta θ为一内点,那么 C C C还是吸收的,并且 P ( x ) P(x) P(x)还是一致连续的。
注:称 P P P为下半连续:若对 ∀ a ∈ R \forall a\in\mathbb{R} aR,有 { x ∈ X : P ( x ) ⩽ a } \{x\in\mathscr{X}:P(x)\leqslant a\} {xX:P(x)a}为闭集。

内积空间

定义1.6.1 共轭双线性函数

(1) a ( x , α 1 y 1 + α 2 y 2 ) = α ˉ 1 a ( x , y 1 ) + α ˉ 2 a ( x , y 2 ) a(x,\alpha_1y_1+\alpha_2y_2)=\bar{\alpha}_1a(x,y_1)+\bar{\alpha}_2a(x,y_2) a(x,α1y1+α2y2)=αˉ1a(x,y1)+αˉ2a(x,y2)
(2) a ( α 1 x 1 + α 2 x 2 , y ) = α 1 a ( x 1 , y ) + α 2 a ( x 2 , y ) a(\alpha_1x_1+\alpha_2x_2,y)=\alpha_1a(x_1,y)+\alpha_2a(x_2,y) a(α1x1+α2x2,y)=α1a(x1,y)+α2a(x2,y)

q ( x ) : = a ( x , x ) q(x):=a(x,x) q(x):=a(x,x) a a a诱导的二次型
q ( x ) ∈ R 1 ⇔ a ( x , y ) = a ( y , x ) ‾ q(x)\in\mathbb{R}^1\Leftrightarrow a(x,y)=\overline{a(y,x)} q(x)R1a(x,y)=a(y,x)

定义1.6.3 内积

线性空间 X \mathscr{X} X上的一个共轭双线性函数
( ⋅ , ⋅ ) : X × X → K (\cdot,\cdot):\mathscr{X}\times\mathscr{X}\to\mathbb{K} (,):X×XK
称为是一个内积,若它满足:
(1) ( x , y ) = ( y , x ) ‾ ( ∀ x , y ∈ X ) (x,y)=\overline{(y,x)}\quad (\forall x,y\in\mathscr{X}) (x,y)=(y,x)(x,yX)(共轭对称性)
(2) ( x , x ) ⩾ 0 ( ∀ x ∈ X ) , ( x , x ) = 0 ⇔ x = θ (x,x)\geqslant0\quad(\forall x\in\mathscr{X}),(x,x)=0\Leftrightarrow x=\theta (x,x)0(xX),(x,x)=0x=θ(正定性)

例:
l 2 l^2 l2空间是内积空间, ( x , y ) = ∑ i = 1 ∞ x i y ˉ i (x,y)=\sum\limits_{i=1}^\infty x_i\bar{y}_i (x,y)=i=1xiyˉi
L 2 L^2 L2空间是内积空间, ( u , v ) = ∫ Ω u ( x ) v ( x ) ‾ d x (u,v)=\int_\Omega u(x)\overline{v(x)}dx (u,v)=Ωu(x)v(x)dx

命题1.6.8 Cauchy-Schwarz不等式

( ( X ) , ( ⋅ , ⋅ ) ) (\mathscr(X),(\cdot,\cdot)) ((X),(,))是内积空间,令 ∣ ∣ x ∣ ∣ = ( x , x ) 1 2 ( ∀ x ∈ X ) ||x||=(x,x)^{\frac{1}{2}}\quad(\forall x\in\mathscr{X}) x=(x,x)21(xX),则有 ∣ ( x , y ) ∣ ⩽ ∣ ∣ x ∣ ∣ ∣ ∣ y ∣ ∣ ( ∀ x , y ∈ X ) |(x,y)|\leqslant||x||||y||\quad(\forall x,y\in\mathscr{X}) (x,y)xy(x,yX)。等号成立当且仅当x,y线性相关。

由此可得内积是关于范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| 的连续函数,内积空间 ( X , ( ⋅ , ⋅ ) ) (\mathscr{X},(\cdot,\cdot)) (X,(,))是严格凸的 B ∗ B^* B空间

命题1.6.13 平行四边形法则

B ∗ B^* B空间 ( X , ∣ ∣ ⋅ ∣ ∣ ) (\mathscr{X},||\cdot||) (X,)中引入一个内积 ( ⋅ , ⋅ ) (\cdot,\cdot) (,)满足 ∣ ∣ x ∣ ∣ = ( x , x ) 1 2 ||x||=(x,x)^{\frac{1}{2}} x=(x,x)21,当且仅当范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| 满足平行四边形等式 ∣ ∣ x + y ∣ ∣ 2 + ∣ ∣ x − y ∣ ∣ 2 = 2 ( ∣ ∣ x ∣ ∣ 2 + ∣ ∣ y ∣ ∣ 2 ) ( ∀ x , y ∈ X ) ||x+y||^2+||x-y||^2=2(||x||^2+||y||^2)\quad(\forall x,y\in\mathscr{X}) x+y2+xy2=2(x2+y2)(x,yX)

定义1.6.14 Hilbert空间

完备的内积空间称为Hilbert空间

定义1.6.17 正交

两个元素正交: ( x , y ) = 0 (x,y)=0 (x,y)=0,记为 x ⊥ y x\perp y xy
正交补: M ⊥ : = { x ∈ X ∣ x ⊥ M } M^{\perp}:=\{x\in\mathscr{X}|x\perp M\} M:={xXxM}

(1) 若 x ⊥ y i ( i = 1 , 2 ) x\perp y_i(i=1,2) xyi(i=1,2),则 x ⊥ ( λ 1 y 1 + λ 2 y 2 ) x\perp(\lambda_1y_1+\lambda_2y_2) x(λ1y1+λ2y2)
(2) 若 x = y + z x=y+z x=y+z,且 y ⊥ z y\perp z yz,则| ∣ x ∣ ∣ 2 = ∣ ∣ y ∣ ∣ 2 + ∣ ∣ z ∣ ∣ 2 |x||^2=||y||^2+||z||^2 x2=y2+z2
(3) 若 x ⊥ y n ( n ∈ N ) x\perp y_n(n\in\mathbb{N}) xyn(nN),且 y n → y y_n\to y yny,则 x ⊥ y x\perp y xy
(4) 若 x ⊥ M x\perp M xM,则 x ⊥ s p a n { M } x\perp span\{M\} xspan{M}
(5) M ⊥ M^\perp M X \mathscr{X} X的一个闭线性子空间
(6) M ‾ ⊥ = M ⊥ \overline{M}^\perp=M^\perp M=M

定义1.6.19 正交集

X \mathscr{X} X是一个内积空间,集合 S = { e α ∣ α ∈ A } S=\{e_\alpha|\alpha\in A\} S={eααA} X \mathscr{X} X的一个子集,称 S S S正交集是指 e α ⊥ e β ( ∀ α ≠ β , α , β ∈ A ) e_\alpha\perp e_\beta\quad(\forall\alpha\neq\beta,\alpha,\beta\in A) eαeβ(α=β,α,βA) ∣ ∣ e α ∣ ∣ = 1 ( ∀ α ∈ A ) ||e_\alpha||=1(\forall\alpha\in A) eα=1(αA),则称 S S S正交规范集;如果 S ⊥ = { θ } S^\perp=\{\theta\} S={θ},那么称 S S S完备

若对 ∀ x ∈ X \forall x\in\mathscr{X} xX x = ∑ α ∈ A ( x , e α ) e α x=\sum\limits_{\alpha\in A}(x,e_\alpha)e_\alpha x=αA(x,eα)eα,则正交规范集 S = { e α ∣ α ∈ A } S=\{e_\alpha|\alpha\in A\} S={eααA}称为一个(或封闭的),其中 { ( x , e α ) ∣ α ∈ A } \{(x,e_\alpha)|\alpha\in A\} {(x,eα)αA}称为 x x x关于基 { e α ∣ α ∈ A } \{e_\alpha|\alpha\in A\} {eααA}Fouier系数

{ θ } \{\theta\} {θ}内积空间 X \mathscr{X} X中必存在完备正交集

定义1.6.23 Bessel不等式与Parseval等式

X \mathscr{X} X是一个内积空间,集合 S = { e α ∣ α ∈ A } S=\{e_\alpha|\alpha\in A\} S={eααA} X \mathscr{X} X的正交规范集,那么 ∀ x ∈ X \forall x\in\mathscr{X} xX
∑ α ∈ A ∣ ( x , e α ) ∣ 2 ⩽ ∣ ∣ x ∣ ∣ 2 \sum\limits_{\alpha\in A}|(x,e_\alpha)|^2\leqslant||x||^2 αA(x,eα)2x2

推论1:设 X \mathscr{X} X是一个内积空间,集合 S = { e α ∣ α ∈ A } S=\{e_\alpha|\alpha\in A\} S={eααA} X \mathscr{X} X的正交规范集,那么对 ∀ x ∈ X \forall x\in\mathscr{X} xX ∑ α ∈ A ( x , e α ) e α ∈ X \sum\limits_{\alpha\in A}(x,e_\alpha)e_{\alpha}\in\mathscr{X} αA(x,eα)eαX
∣ ∣ x − ∑ α ∈ A ( x , e α ) e α ∣ ∣ 2 = ∣ ∣ x ∣ ∣ − ∑ α ∈ A ∣ ( x , e α ) ∣ 2 ||x-\sum\limits_{\alpha\in A}(x,e_\alpha)e_\alpha||^2=||x||-\sum\limits_{\alpha\in A}|(x,e_\alpha)|^2 xαA(x,eα)eα2=xαA(x,eα)2

推论2:设 X \mathscr{X} X是一个内积空间,集合 S = { e α ∣ α ∈ A } S=\{e_\alpha|\alpha\in A\} S={eααA} X \mathscr{X} X的正交规范集,则下三条等价
(1) S S S是封闭的(任意 x x x可展, S S S是正交规范基)
(2) S S S是完备的( S ⊥ = { θ } S^\perp=\{\theta\} S={θ}
(3) Parseval等式成立,即 ∣ ∣ x ∣ ∣ 2 = ∑ α ∈ A ∣ ( x , e α ) ∣ 2 ( ∀ x ∈ X ) ||x||^2=\sum\limits_{\alpha\in A}|(x,e_\alpha)|^2\quad(\forall x\in\mathscr{X}) x2=αA(x,eα)2(xX)

定义1.6.29 同构

( X 1 , ( ⋅ , ⋅ ) 1 ) , ( X 2 , ( ⋅ , ⋅ ) 2 ) (\mathscr{X}_1,(\cdot,\cdot)_1),(\mathscr{X}_2,(\cdot,\cdot)_2) (X1,(,)1),(X2,(,)2)是两个内积空间,如果存在 X 1 → X 2 \mathscr{X}_1\to\mathscr{X}_2 X1X2的一个线性同构 T T T满足 ( T x , T y ) 2 = ( x , y ) 1 ( ∀ x , y ∈ X 1 ) (Tx,Ty)_2=(x,y)_1\quad(\forall x,y\in\mathscr{X}_1) (Tx,Ty)2=(x,y)1(x,yX1),则称内积空间 X 1 \mathscr{X}_1 X1 X 2 \mathscr{X}_2 X2是同构的。

如果Hilbert空间 X \mathscr{X} X可分,必须且仅须它有至多可数的正交规范基 S S S。当 S S S元素个数 N < ∞ N<\infty N<时, X \mathscr{X} X同构于 K N \mathbb{K}^N KN;当 N = ∞ N=\infty N=时, X \mathscr{X} X同构于 l 2 l^2 l2

定义1.6.31 最佳逼近和正交分解

C C C是Hilbert空间的闭凸子集,则 C C C上存在唯一元素 x 0 x_0 x0取到最小模。
于是对任意 y ∈ X , ∃ ! x 0 ∈ C y\in\mathscr{X},\exists!x_0\in C yX,!x0C,使得 ∣ ∣ y − x 0 ∣ ∣ = inf ⁡ x ∈ C ∣ ∣ y − x ∣ ∣ ||y-x_0||=\inf\limits_{x\in C}||y-x|| yx0=xCinfyx

C C C是内积空间 X \mathscr{X} X中的一个闭凸子集,任意 ∀ y ∈ X \forall y\in\mathscr{X} yX,为了 x 0 x_0 x0 y y y上的最佳逼近元,必须且仅须 R e ( y − x 0 , x 0 − x ) ⩾ 0 ( ∀ x ∈ C ) Re(y-x_0,x_0-x)\geqslant0\quad(\forall x\in C) Re(yx0,x0x)0(xC)

M M M是Hilbert空间 X \mathscr{X} X上的闭线性子流形, ∀ x ∈ X \forall x\in\mathscr{X} xX y y y x x x M M M上的最佳逼近元,必须且仅须满足 ( x − y ) ⊥ ( M − { y } ) (x-y)\perp(M-\{y\}) (xy)(M{y});若 M M M是闭线性子空间,则 ( x − y ) ⊥ M (x-y)\perp M (xy)M,则 ∀ x ∈ X \forall x\in\mathscr{X} xX,存在着下面的唯一正交分解
x = y + z ( y ∈ M , z ∈ M ⊥ ) x=y+z\quad(y\in M, z\in M^\perp) x=y+z(yM,zM)
y y y x x x M M M上的正交投影。

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

73826669

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值