4——CNN(卷积神经网络)

4——CNN(卷积神经网络)

运用矩阵的方式,找一个特征矩阵,经过矩阵乘,使原矩阵缩小维度,好处理。

以围棋为例,不需要看到整体,只需找出有没有和我特征矩阵相同的模块。

缩小缩小缩小。

RGB是三维,第三维就是R,G,B一起作为一个矩阵来运算,加上之前的二维。

Convolution and Mp(忘了这个术语),是基本步骤。
先给一个fifter去处理,再给新图片,重复。

最后可以取每组矩阵中最大的那个作为特征。

AlphaGo并没有用到一个××(忘了)技术,因为没必要,并不是越高深越好。

还有提到了放大图片的特征,如风景画中的石头。
手写数字训练出的模型最初错误率很高。。。

在火车上看到,质量比较差,今天也没机会回顾,全凭回忆,有错误之处还请指出。

想不到有一天在火车上我都能想到学习!

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值