4——CNN(卷积神经网络)
运用矩阵的方式,找一个特征矩阵,经过矩阵乘,使原矩阵缩小维度,好处理。
以围棋为例,不需要看到整体,只需找出有没有和我特征矩阵相同的模块。
缩小缩小缩小。
RGB是三维,第三维就是R,G,B一起作为一个矩阵来运算,加上之前的二维。
Convolution and Mp(忘了这个术语),是基本步骤。
先给一个fifter去处理,再给新图片,重复。
最后可以取每组矩阵中最大的那个作为特征。
AlphaGo并没有用到一个××(忘了)技术,因为没必要,并不是越高深越好。
还有提到了放大图片的特征,如风景画中的石头。
手写数字训练出的模型最初错误率很高。。。
在火车上看到,质量比较差,今天也没机会回顾,全凭回忆,有错误之处还请指出。
想不到有一天在火车上我都能想到学习!