【实战】DGP(Deep Generative Prior):基于图像的先验概率分布,尝试进行图像的上色、修复、超分和变形

本文介绍了如何使用预训练的GAN模型进行图像的上色、修复、超分和变形,通过香港中文大学潘新钢博士的论文和开源项目,展示在Windows 10环境下,借助NVIDIA GeForce RTX 2080Ti GPU的实验过程。尽管实际效果仍有提升空间,但深入研究源代码有助于理解GAN原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

预训练的 GAN 模型包含了对训练图像的先验知识( image prior),可以利用这些先验知识对某些图像进行重建,包括:上色、修复、超分、变形等。

这里我们引用了香港中文大学潘新钢博士的一篇论文,看一看这样做的效果如何。

论文地址:https://arxiv.org/abs/2003.13659

Github项目:https://github.com/XingangPan/deep-generative-prior

上手过程( Windows 10,NVIDIA GeForce RTX 2080Ti):

(1)到 github 上下载源代码;

(2)软件基本运行环境:

python>=3.6
pytorch>=1.0.1

(3)进入工作目录,安装其他软件环境:

pip install -r requirements.txt

(4)下载 pytorch 预训练模型:

百度网盘: https://pan.baidu.com/s/1jYuwZL4Fgcc7HG6He

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值