python问题总结解决方法

问题1:

AtrributeError:module keras.engine.topology’ has no attribute load_weights_from_hdf5_group_by_name

出现这个错误的原因是:keras的版本不对。当我们在配置mask-rcnn的时候,根目录下的requirements.txt里面要求的python的包注明的是“keras>=2.0.8”,但是load_weights_from_hdf5_group_by_name只在keras2.0.8的版本中出现,不会出现在最新的keras版本中,(大家可以看下自己的keras版本,命令如下:(1)python 回车(2)import keras h 回车(3)keras.__version__ 回车),我这里默认安装的是keras2.2.0,版本太高。

解决方法:

     1)卸载keras:pip uninstall keras      

 2)安装2.0.8版本的keras:pip install keras==2.0.8

问题2

警告:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA

解决方法:

(1)如果安装的是GPU版本

如果你有一个GPU,你不应该关心AVX的支持,因为大多数昂贵的操作将被分派到一个GPU设备上(除非明确地设置)。在这种情况下,您可以简单地忽略此警告:

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

(2)如果安装的是CPU版本(pip install tensorflow)

1.在代码中加入如下代码,忽略警告:

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

2.编译TensorFlow源码

如果您没有GPU并且希望尽可能多地利用CPU,那么如果您的CPU支持AVX,AVX2和FMA,则应该从针对CPU优化的源构建tensorflow。在这个问题中已经讨论过这个问题,也是这个GitHub问题。 Tensorflow使用称为bazel的ad-hoc构建系统,构建它并不是那么简单,但肯定是可行的。在此之后,不仅警告消失,tensorflow性能也应该改善。

2、无人车检测理解

对象检测(object detection):不但需要检测出物体(image classification),还要能定位出在图片的具体位置(classification with localization),而且要能处理图片中的多个物体(detection)。

无人驾驶中确定图片是否有1)行人;2)小汽车;3)摩托车,并用矩形标记出物体在图像中的位置(bx、by、bh、bw),如果三类目标都没有,则标记为4)背景。使用softmax分类这四种情况。这里只考虑每张图片最多有一个目标的情况。输出y = [pc, bx, by, bh, bw, c1, c2, c3]T。其中pc表示图片中是否有目标,c1、c2、c3表示该对象术语哪一类。如果图片中有一辆车,则标签y = [1, bx, by, bh, bw, 0, 1, 0]T;如果图片中没有目标,则标签y = [0, ?, ?, ?, ?, ?, ?, ?]T,问号表示一旦pc为0,其他参数都不重要。

https://images2018.cnblogs.com/blog/1107868/201711/1107868-20171129090847987-1244771581.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一颗温暖的心_lucky

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值