回旋加速器和同步加速器的区别

最近的一个任务是对回旋加速器的厂家做调研,在Google的时候回旋加速器是Cyclotron,同步加速器是Electron Synchrotron,然后一样是带电粒子在做周期的回旋运动,对于我这种外行,有时候会混淆。

首先贴一下J_PARK对直线加速器和同步加速器的区别的表述

http://j-parc.jp/Acc/ja/acc.html#difference

加速器的原理

“加速器”是一种加速原子核和质子和电子等基本粒子的装置。
利用电力加速粒子。准备两个金属电极,分别用+和 - 充电。在两个电极之间放置带正电荷的质子朝向电极加速。在许多情况下,这些+和 - 电在两个电极之间来回传递,并且每秒电往复的次数称为“频率”。
在粒子加速器中,这个频率很高,因此被称为“高频加速”。当颗粒在空气中飞行时,它们与空气分子碰撞并且不能加速,因此必须排空加速腔中的所有空气分子。

 

直线加速器和同步加速器之间的区别

在直线加速器中,几个加速腔线性排列,并且颗粒在很长的距离内加速。然后,由于光束总是可以从出口发射,因此可以加速许多粒子(大电流),但由于每个加速腔不能仅加速一个粒子一次,因此不是经济实惠。

另一方面,一旦加速粒子返回加速腔并加速多次,能量就会稳定上升。为了使颗粒返回,必须使颗粒弯曲,因此,为此目的使用称为“弯曲电磁铁”的磁体。而且,由于这种加速器接近圆形,因此称为“圆形加

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值