比较两个群:同构、同态

      我们称 群(G\diamond)与 群(G'\bullet)同构,即存在 同构映射 fG\rightarrow G' 满足以下条件:

       i) f\left ( a\diamond b \right )= f\left ( a \right )\bullet f\left ( b \right ) 对任意a,b \in G 成立;

       ii) f 是双射(即 一 一 映射)。 

通常,用符号 G\simeq G' 表示两个群同构。

群同构的一些简单性质(可自行验证)

1. 群 G 的单位元 e 对应到群 G' 的单位元 e',即 f\left ( e \right )= e'

2. 群 G 中 原像的逆元 都对应到群  G'中 像的逆元,即 f\left ( a^{-1} \right )= f\left ( a \right )^{-1} 对任意 a \in G 成立。

3. 同构(关系)是相互的、对称的,即  G\simeq G' \Leftrightarrow G' \simeq G, 因为上述条件 ii) 保证了存在逆映射 f^{-1}G'\rightarrow G 也是一个同构映射。

       在上述群同构(关系)的定义中若 G'= G, 就得到了群 G 到自身的同构映射 \varphi : G\rightarrow G, 称之为群的 自同构(映射)。例如,对于任意群 G 都存在“每个元素对应到自身”的恒等映射(也称 单位映射)e_{G} : g \mapsto g 是自同构(映射)。

       同构映射的上述性质 3 表明,自同构的逆映射也是自同构(映射)。

       如果 \varphi\psi 是群 G 的自同构(映射),那么任取 a, b \in G, \left ( \varphi \circ \psi \right )\left ( ab \right )= \varphi \left ( \psi \left ( ab \right ) \right )= \varphi \left ( \psi \left ( a \right )\psi \left ( b \right ) \right )= \varphi \left ( \psi \left ( a \right ) \right )\varphi \left ( \psi \left ( b \right ) \right )= \left ( \varphi \circ \psi \right )\left ( a \right ) \left ( \varphi \circ \psi \right )\left ( b \right ) 满足上述条件 i);可以验证,\varphi \circ \psi 亦满足条件 ii)。也就是说,群 G 的任意两个自同构(映射)\varphi 与 \psi 的合成(映射)\varphi \circ \psi 仍是一个自同构(映射)。

       综合以上分析,自然记 Aut(G) 为群 G 的全体自同构(映射)组成的集合,\circ 为该集上的二元代数运算——映射合成:\left ( \varphi \circ \psi \right )\left ( g \right )= \varphi \left ( \psi \left ( g \right ) \right )\forall g\in G。容易验证运算 \circ 在集 Aut(G) 上满足结合律,单位元是恒等映射 e_{G}。可见,集 Aut(G) 连同其上的二元运算 \circ 构成一个群,称之为任一群 G 的自同构群。事实上,由 G\rightarrow G 的全体双射组成的集合连同其上的二元运算 \circ(映射合成)亦构成另一个群(只满足条件 ii) ),而群 Aut(G) 是它的一个子群(同时满足条件 i) 和 ii) )。

       在群 G 的自同构群中含有一个特殊的子群,称为 内自同构群,记作 Inn(G),

其元素是映射 I_{a} : g \mapsto aga^{-1} , \forall\in G,\forall\in G。验证表明,I_{a} 满足自同构(映射)定义中的全部条件(即条件 i) 与条件 ii) )。而且逆元 I_{a}^{-1}= I_{a^{-1}},单位元 I_{e}= 1(简记作 1 的恒等映射 e_{G} ),I_{a}\circ I_{b}= I_{ab}(可自行验证此关系式)。

       由此可见, f\left ( a \right )=I _{a}a\in G 定义了一个从群 G 到它的内自同构群 Inn(G) 的映射

f : G\rightarrow Inn\left ( G \right ) 满足同构映射定义中的条件 i),但条件 ii) 不一定满足。于是,我们自然地把只满足同构定义中条件 i) 的一般映射 f : G\rightarrow {G}' 定义为 同态映射。群到自身的同态映射也叫作群的 自同态。

       集合 ker f = \left \{ g\in G|f\left ( g \right ) = {e}'\right \},其中 {e}' 是群 {G}' 的单位元,叫作同态(映射)f 的 核。可以验证,核 ker f 是 群 G 的一个子群;同态映射 f 的像 Im f\subset {G}' 是群 {G}' 的一个子群;如果 ker f= \left \{ e \right \}e 是群 G 的单位元,那么 f : G\rightarrow Imf 是一个同构(映射)。可见,同态映射 f 能否强化为同构映射在于非平凡 核ker f 的存在性,它是度量 f 的非单射性的尺度。

       进一步讲,同构(关系)是一种 等价关系。回顾一下,任一集合 X 上的二元关系 \sim  叫作 等价关系,若任取 x{x}'{x}'' \in X, 满足以下条件:

        1) 反身性 x \sim x;

        2) 对称性 x\sim x' \Rightarrow x'\sim x

        3) 传递性 x\sim x'x'\sim {x}'' \Rightarrow x\sim {x}''

      而同态(映射)并不要求满射,也不要求单射。一般地,同态(关系)仅是一种二元关系,构不成等价关系。

  • 9
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
证明有限循环同构于模n的加法Zn: 假设G是一个有限循环,生成元为a,|G|=k。那么,对于任意一个元素g∈G,都可以表示为a^m,其中0≤m<k。因此,我们可以定义一个映射f:G→Zn,使得f(a^m)=m(mod n),其中n=k。此时,我们需要证明这个映射是一个同构映射。 首先,我们证明这个映射是一个同态映射。对于任意的a^m和a^n,我们有: f(a^m+a^n)=f(a^(m+n))=m+n(mod n)=f(a^m)+f(a^n)(mod n) 因此,这个映射是一个同态映射。 其次,我们证明这个映射是一个满射。对于任意一个元素m∈Zn,我们可以找到一个元素a^m∈G,使得f(a^m)=m(mod n)。因此,这个映射是一个满射。 最后,我们证明这个映射是一个单射。如果对于不同的元素a^m和a^n,有f(a^m)=f(a^n),那么m=n(mod n),因此a^(m-n)是G的一个非零元素,但它的阶k不能整除n。这与n=k矛盾,因此这个映射是一个单射。 综上所述,这个映射是一个同构映射,因此有限循环同构于模n的加法Zn。 证明无限循环同构于整数加法Z: 假设G是一个无限循环,生成元为a。那么,对于任意一个元素g∈G,都可以表示为a^m,其中m是整数。因此,我们可以定义一个映射f:G→Z,使得f(a^m)=m。此时,我们需要证明这个映射是一个同构映射。 首先,我们证明这个映射是一个同态映射。对于任意的a^m和a^n,我们有: f(a^m+a^n)=f(a^(m+n))=m+n=f(a^m)+f(a^n) 因此,这个映射是一个同态映射。 其次,我们证明这个映射是一个满射。对于任意一个整数m∈Z,我们可以找到一个元素a^m∈G,使得f(a^m)=m。因此,这个映射是一个满射。 最后,我们证明这个映射是一个单射。如果对于不同的元素a^m和a^n,有f(a^m)=f(a^n),那么m=n,因此a^(m-n)是G的一个非零元素。由于G是无限循环,a^(m-n)的阶不可能有限,因此m-n=0,即m=n。因此,这个映射是一个单射。 综上所述,这个映射是一个同构映射,因此无限循环同构于整数加法Z。 同态同构kerf的定义: 设f:G→H是一个同态映射,其中G和H是两个。我们定义ker(f)为G的一个子,使得ker(f)={g∈G|f(g)=e},其中e是H的单位元。此时,我们称G和ker(f)同态同构
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值