Normalization
不同Normalization之间的具体区别和优缺点我也不是很清楚,这里只是展示他们的具体运行机制
1. Batch Normalization
加速收敛,归一化为标准正态分布,能够解决梯度消失的问题
图像分类任务一般用Batch Normalization,不用Instance Normalization?
Batch Normalization有一个很大的缺点,需要比较大的Batch Size,比如32,但是有些任务很大的Batch显存吃不下,对于较小的Batch表现又较差,所以需要下面的归一化方法
Batch Normalization示例

2. Instance Normalization
作者提到输出图像不依赖内容之间的对比,所以可以用实例归一化

3. Layer Normalization

4. Group Normalization
Group Normalization与Laye

本文介绍了BatchNormalization、InstanceNormalization、LayerNormalization及GroupNormalization等归一化技术的基本原理及其应用场景。BatchNormalization能加速收敛并解决梯度消失问题,适用于图像分类任务;InstanceNormalization使输出图像不依赖内容间的对比;LayerNormalization和GroupNormalization则更适用于小批量数据情况。
最低0.47元/天 解锁文章
389

被折叠的 条评论
为什么被折叠?



