不同Normalization之间的比较

本文介绍了BatchNormalization、InstanceNormalization、LayerNormalization及GroupNormalization等归一化技术的基本原理及其应用场景。BatchNormalization能加速收敛并解决梯度消失问题,适用于图像分类任务;InstanceNormalization使输出图像不依赖内容间的对比;LayerNormalization和GroupNormalization则更适用于小批量数据情况。

不同Normalization之间的具体区别和优缺点我也不是很清楚,这里只是展示他们的具体运行机制

1. Batch Normalization

加速收敛,归一化为标准正态分布,能够解决梯度消失的问题
图像分类任务一般用Batch Normalization,不用Instance Normalization?
Batch Normalization有一个很大的缺点,需要比较大的Batch Size,比如32,但是有些任务很大的Batch显存吃不下,对于较小的Batch表现又较差,所以需要下面的归一化方法

Batch Normalization示例

在这里插入图片描述

2. Instance Normalization

作者提到输出图像不依赖内容之间的对比,所以可以用实例归一化

在这里插入图片描述

3. Layer Normalization

在这里插入图片描述

4. Group Normalization

Group Normalization与Laye

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值