星鸾云平台:高效配置Anaconda环境

星鸾云平台以其卓越的产品功能和优势,成为众多研究者和开发者的理想选择。平台提供多样化的算力资源和AI一体机产品,能够满足不同用户的需求。新用户注册即可体验,仅需支付1分钱即可使用GeForce RTX 4090 GPU显卡进行一小时的计算任务。本文将以在星鸾云服务器上安装Anaconda并配置Python环境为例,详细介绍如何利用星鸾云平台的优势来高效完成计算任务。

平台地址:https://xl.hzxingzai.cn/

多种算力资源和AI一体机

在星鸾云平台上,用户可以选择不同配置的算力资源和AI一体机,根据自己的需求灵活选择适合的产品。下面是星鸾云平台提供的部分算力资源和AI一体机的规格信息:

算力资源

产品性能价格
NVIDIA H800 PCIe 80G单精 756TFLOPS / 半精 1513 TFLOPS敬请期待
A800 PCIe 80G单精 156 TFLOPS / 半精 312 TFLOPS¥ 8.90/时 ¥ 9.60/时
A800 PCIe 80G单精 156 TFLOPS / 半精 312 TFLOPS¥ 8.90/时 ¥ 9.60/时
NVIDIA H100/H800 SXM 80G单精 989 TFlops / 半精 1979 TFlops敬请期待

AI一体机规格

AI一体机规格配置详情
8卡工作站 (Intel 8352V x RTX 4090)CPU: Intel® Xeon® Platinum 8352V CPU @ 2.10GHz * 2
DIMM: DDR4 32G * 8
NIC: 10G * 2
RAID: LSI MegaRAID SAS-3 3108
DISK: SSD 480 * 2, NVME 7.68T * 1
极致性价比
8卡工作站 (Intel 8358 x A800)CPU: Intel® Xeon® Platinum 8358 CPU @ 2.60GHz 128
DIMM: DDR4 64G * 32
NIC: 10G * 2
RAID: RAID-LSI-9361-8i(2G)-1-X
DISK: SSD 960 * 2, NVME 7.68TB * 1
高性能计算

产品功能

星鸾云平台提供多种功能,帮助用户高效、安全地完成计算任务:

产品功能描述
弹性使用、稳定高效用户可以灵活地自定义镜像,快速复制云主机操作系统环境,省去重复部署系统环境的工作量。
云服务备份对云主机系统盘创建备份,可用于快速恢复数据状态,保障系统数据安全。
灵活扩容云主机支持随时扩容,您可按需扩容,避免资源浪费。
VPC虚拟私有云通过先进的SDN技术,实现完全的二层网络隔离,有效隔离用户之间的网络,保障通讯安全。

在星鸾云平台上安装Anaconda并配置Python环境的步骤

注册和登录

在这里插入图片描述

  1. 访问星鸾云平台的官方网站。
  2. 在注册页面填写个人信息并创建账户。
  3. 完成注册后,登录到您的账户。

体验GPU显卡服务

  1. 新用户可以体验GeForce RTX 4090 GPU显卡服务,仅需支付1分钱。
  2. 选择要体验的GPU型号和体验时长(通常为1小时)。
  3. 完成订单支付,即可开始体验。

在这里插入图片描述

选择服务器实例

  1. 在算力市场选择自己需要的服务器实例。
  2. 配置GPU数量、镜像等参数。
    在这里插入图片描述

登陆GPU实例

  1. 平台提供了SSH登录字段获取登录指令和初始密码进行连接。注意更换SSH登录指令中的端口等信息。
  2. 示例登录指令:实例直接提供了SSH 登录字段获取登录指令、初始密码进行连接。只需要注意SSH 登录指令中的端口等需要更换您的实例对应的信息。
    在这里插入图片描述
ssh -p 20196 root@115.238.33.252

对于XShell,需手动修改格式:

ssh root@115.238.33.252 20196

注意:实例到期后未及时续费将会释放实例,实例释放会导致数据清空且不可恢复,释放前实例在数据在。数据盘扩容后,需执行脚本进行挂载!

当然还可以用公网映射,方便做一些接口之类的

只需要配置好内网端口好即可
在这里插入图片描述

挂载数据盘

数据盘扩容成功后,使用SSH进入到gpu环境,配置python首先进行数据盘挂载!
在这里插入图片描述
挂载数据盘有二种方法

  1. 创建一个bash脚本,bash运行
#!/bin/bash
#des: auto EXP Disk,仅支持vdb硬盘,其他新购盘,参照#确保 /dev/vdb1 不存在
#date: 2024-2-21
#auth: chukk
# 检查 parted 命令是否存在
if ! which parted >/dev/null; then
    echo "parted 命令不存在,尝试安装..."

    # 你可能需要输入你的密码
    apt-get update
    apt-get install parted -y

    # 再次检查 parted 命令是否成功安装
    if which parted >/dev/null; then
        echo "parted 命令已成功安装。"
    else
        echo "parted 命令安装失败。"
    fi
    else
        echo "parted 命令已存在。"
    fi


# 确保 /dev/vdb 存在
if [ ! -e /dev/vdb ]; then
    echo "/dev/vdb 不存在"
    exit 1
fi
#确保 /dev/vdb1 不存在
#新购硬盘挂载
if [ ! -e /dev/vdb1 ]; then
# 使用 parted 创建 GPT 分区表
parted /dev/vdb mklabel gpt
# 创建一个占用整个磁盘的分区
parted -a opt /dev/vdb mkpart primary ext4 0% 100%
# 等待系统识别新分区
sleep 2
# 格式化新分区为 ext4 文件系统
mkfs.ext4 /dev/vdb1
# 获取新分区的 UUID
UUID=$(blkid -s UUID -o value /dev/vdb1)
# 创建挂载点
mkdir -p /root/xinglin-data
# 挂载分区
mount /dev/vdb1 /root/xinglin-data
# 将新分区加入 fstab 以实现开机自动挂载
echo "UUID=${UUID} /root/xinglin-data ext4 defaults 0 2" >> /etc/fstab
echo "分区和挂载完成。"
exit 1
fi
#确保 /dev/vdb1 存在
#已存在硬盘
if [  -e /dev/vdb ]; then
growpart /dev/vdb 1
resize2fs /dev/vdb1
echo "分区扩容完成。"
exit 1
fi
  1. 推荐使用远程调度脚本
curl -fsSL http://mirrors.chukk.cc:8866/shell/autoDIsk.sh | bash

挂载完成
在这里插入图片描述

配置CUDA环境

  1. 下载并安装CUDA驱动:
wget http://mirrors.chukk.cc:8866/cuda/cuda_11.7.1_515.65.01_linux.run
chmod +x cuda_11.7.1_515.65.01_linux.run
apt install gcc make screen stress -y
apt install linux-headers-$(uname -r) -y
apt remove nvidia*
./cuda_11.7.1_515.65.01_linux.run
  1. 切换CUDA版本:
source /cuda/switch-cuda.sh 11.8

安装Anaconda

主要账户是没有root权限的,最好是root目录下创建一个data文件夹,将环境配置到data环境下

  1. 安装Python:
sudo apt update
sudo apt install python3 python3-pip
  1. 安装Conda:
wget -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

#将conda命令加入到bash环境中
vim ~/.bashrc


#在文件最后一行加入
conda init bash

source ~/.bashrc

我这里将环境加入到指定文件夹下
在这里插入图片描述

也可以在

vim ~/.bashrc

在文件最后一行加入

conda init bash

需要重进一次服务器,conda命令就配置在bash环境下了

  1. 创建 Python 3.8 虚拟环境:
create -n py38 python=3.8 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main

星鸾云平台的优势

产品优势描述
超强算力星鸾云GPU云服务器配备业界超强算力的GPU计算卡,具有超强的并行计算能力,为您提供触手可得的算力,提升业务效率与竞争力。
专业稳定星鸾云HPC智能液冷数据中心为GPU云服务器稳定运行提供强大后盾,保证99.9%的机器稳定性。
高性价比支持按需和包周期计费模式,即租即用、弹性扩展,您可以按需购买,避免资源浪费。
快速交付云主机从订购到开通使用仅需数分钟时间,可快速交付到用户手中。并提供部分操作系统预装驱动镜像,帮助您一键部署环境,快速接入业务。

星鸾云平台以其强大的算力和灵活的配置,为用户提供高效、稳定的计算服务。无论您是研究人员、开发者还是AI爱好者,星鸾云平台都能满足您的需求,让您专注于实现创意和提升业务效率。注册体验,感受星鸾云平台的卓越性能和优质服务!

要在阿里服务器上配置Anaconda和PyTorch环境,可以按照以下步骤操作: ### 步骤一:登录到阿里服务器 通过SSH工具(如PuTTY、Xshell等),使用您的用户名和密码或密钥对连接到阿里ECS实例。 --- ### 步骤二:安装Anaconda 1. **下载Anaconda** Anaconda是一个流行的Python发行版,包含大量科学计算库。选择合适的版本并运行命令下载: ```bash wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh ``` 2. **赋予脚本执行权限并安装** 运行以下命令开始安装: ```bash bash Anaconda3-2023.07-1-Linux-x86_64.sh ``` 按提示完成安装过程,并接受许可协议,默认路径通常是`~/anaconda3`。 3. **初始化Conda** 安装完成后,在终端输入 `source ~/.bashrc` 或重启会话以激活Conda。 --- ### 步骤三:创建虚拟环境 为了保持依赖项隔离,建议创建一个新的Conda环境: ```bash conda create -n pytorch_env python=3.9 ``` 替换`python=3.9`为您需要的具体版本号。 激活该环境: ```bash conda activate pytorch_env ``` --- ### 步骤四:安装PyTorch 访问[官方PyTorch页面](https://pytorch.org/get-started/locally/)获取适合您硬件条件的安装指令。例如对于CUDA支持的GPU设备: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia ``` 如果不需要CUDA支持,则可以选择CPU版本: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu ``` 检查是否成功安装了PyTorch及其版本信息: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` --- ### 步骤五:验证环境设置 编写一个简单的测试代码片段确认一切正常工作: ```python # test_pytorch.py import torch x = torch.rand(5, 3) print("随机生成张量:", x) if torch.cuda.is_available(): print('CUDA可用!') else: print('仅限于CPU.') ``` 将文件上传至服务器并通过下面的方式运行它: ```bash python test_pytorch.py ``` 以上就是如何在阿里服务器上搭建基于Anaconda管理的PyTorch深度学习环境的过程!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

T1.Faker

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值