CALPHAD方法中“外推”的理解

本文探讨了CALPHAD方法在多元合金相图计算中的插值与外推概念。通过数学定义解释了插值是估计已知值之间的函数值,而外推是扩展到已知区域之外的值。在实际相图中,由于实验无法测量不稳定结构,因此需要通过外推来估算相平衡。文章还介绍了二元模型如何外推到三元体系,并给出了Muggianu几何模型作为示例,强调了在不同模型中从低阶系统到高阶系统的吉布斯能量计算都是成分空间的插值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

碎碎念

最初接触到CALPHAD方法的时候,我最大的疑惑就是二元体系的热力学模型是如何整合到三元体系?请教了学长得到的答案是,“把二元的相加在一起就是三元啦。” 当然这个模糊的答案是肯定不会满足我的,但查阅了一些资料得到的答案也不算太能让我信服,有点懒得找了,也就搁置了下来。最近在读数学分析时,看到外推这个词,决定静下心来好好整一下子。

背景介绍

首先提出一个问题,为什么需要研究多元体系?
答:多元合金因为具有多样的微观结构、良好的力学性能等优良特性,在结构和功能材料中得到了广泛的应用。这些合金非常常见,例如Mg合金、Al合金、Ti合金、Fe合金、HEA等。
在《Computer Calculation of Phase Diagrams》有几张相图是公认的准确,那就引出了第二个问题,这些图表是插值还是外推算出?

插值与外推

在数学教材中对于插值和外推的定义是这样的:
插值:估计两个已知值之间的函数值;
外推:基于将已知序列或因子扩展到肯定已知的区域之外的值的估计。
总的来说,估计值与已知值的相对位置决定了估计方法是插值还是外推。例如,一维空间内如果待估计的值在两个已知值之间,则估计方法是插值。
更直观地理解这两个概念,我假设一维空间中有(a,f(a)),(b,f(b))两个点,我们想要估计a点和b点之间的c点就叫插值(interpolation),想要估计这个区间外的d点和e点就叫做外推(extrapolation)。
图1.插值和外推
假设函数为:

f ( x ) = w a ( x ) f ( a ) + w b ( x ) f ( b ) f(x)=w_{a}(x) f(a)+w_{b}(x) f(b) f(x)=wa(x)f(a)+wb(x)f(b)

wa(x)wb(x)分别是f(a)f(b)的权重因子。
wa(x)+wb(x)=1,假设函数为线性;其他情况,假设函数为非线性。
wa(x)≥0且wb(x)≥0,假设方法为插值;其他情况,假设方法为外推。
补充一个小知识点,多元情况下,假设函数可以表达为:

f ( x ) = ∑ i = 1 n + 1 w i ( x i ) f ( x i ) f(x)=\sum_{i=1}^{n+1} w_{i}\left(x_{i}\right) f\left(x_{i}\right) f(x)=i=1n+1wi(xi)f(xi)

实际相图中的插值与外推

实验不能够测量到不稳定结构的晶格稳定性。那如何在已知的成分、温度和压力范围外估算相平衡?
在文献中得到一个答案,外推或者拓展稳定的相边界估计亚稳相平衡的相变温度
相图中的插值和外推
吉布斯能项,例如Gi、Gexij,都和热容、混合热、化学势等相关,并且都是T和P相关的函数。如果所有一元、二元、三元的吉布斯能都在一个T区间和一个P区间内有效,则在这个空间内所有计算都是关于变量T和P的插值。否则就是外推。

二元热力学模型外推到三元的公式推导思路

首先引入一个混合自由能模型——Muggianu Geometric model。

G m = ∑ i X i ln ⁡ X i + R T ∑ i X i ln ⁡ X i + ∑ i j X i X j L i j + ∑ i j k X i X j X k L i j k G_{m} =\sum_{i}^{} X_{i} \ln_{}{X_{i}} +RT\sum_{i}^{} X_{i} \ln_{}{X_{i}} +\sum_{ij}^{} X_{i} X_{j}L_{ij} +\sum_{ijk}^{} X_{i} X_{j} X_{k}L_{ijk} Gm=iXilnXi+RTiXilnXi+ijXiXjL

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值