碎碎念
最初接触到CALPHAD方法的时候,我最大的疑惑就是二元体系的热力学模型是如何整合到三元体系?请教了学长得到的答案是,“把二元的相加在一起就是三元啦。” 当然这个模糊的答案是肯定不会满足我的,但查阅了一些资料得到的答案也不算太能让我信服,有点懒得找了,也就搁置了下来。最近在读数学分析时,看到外推这个词,决定静下心来好好整一下子。
背景介绍
首先提出一个问题,为什么需要研究多元体系?
答:多元合金因为具有多样的微观结构、良好的力学性能等优良特性,在结构和功能材料中得到了广泛的应用。这些合金非常常见,例如Mg合金、Al合金、Ti合金、Fe合金、HEA等。
在《Computer Calculation of Phase Diagrams》有几张相图是公认的准确,那就引出了第二个问题,这些图表是插值还是外推算出?
插值与外推
在数学教材中对于插值和外推的定义是这样的:
插值:估计两个已知值之间的函数值;
外推:基于将已知序列或因子扩展到肯定已知的区域之外的值的估计。
总的来说,估计值与已知值的相对位置决定了估计方法是插值还是外推。例如,一维空间内如果待估计的值在两个已知值之间,则估计方法是插值。
更直观地理解这两个概念,我假设一维空间中有(a,f(a)),(b,f(b))两个点,我们想要估计a点和b点之间的c点就叫插值(interpolation),想要估计这个区间外的d点和e点就叫做外推(extrapolation)。
假设函数为:
f ( x ) = w a ( x ) f ( a ) + w b ( x ) f ( b ) f(x)=w_{a}(x) f(a)+w_{b}(x) f(b) f(x)=wa(x)f(a)+wb(x)f(b)
wa(x)wb(x)分别是f(a)f(b)的权重因子。
wa(x)+wb(x)=1,假设函数为线性;其他情况,假设函数为非线性。
wa(x)≥0且wb(x)≥0,假设方法为插值;其他情况,假设方法为外推。
补充一个小知识点,多元情况下,假设函数可以表达为:
f ( x ) = ∑ i = 1 n + 1 w i ( x i ) f ( x i ) f(x)=\sum_{i=1}^{n+1} w_{i}\left(x_{i}\right) f\left(x_{i}\right) f(x)=∑i=1n+1wi(xi)f(xi)
实际相图中的插值与外推
实验不能够测量到不稳定结构的晶格稳定性。那如何在已知的成分、温度和压力范围外估算相平衡?
在文献中得到一个答案,外推或者拓展稳定的相边界估计亚稳相平衡的相变温度。
吉布斯能项,例如Gi、Gexij,都和热容、混合热、化学势等相关,并且都是T和P相关的函数。如果所有一元、二元、三元的吉布斯能都在一个T区间和一个P区间内有效,则在这个空间内所有计算都是关于变量T和P的插值。否则就是外推。
二元热力学模型外推到三元的公式推导思路
首先引入一个混合自由能模型——Muggianu Geometric model。
G m = ∑ i X i ln X i + R T ∑ i X i ln X i + ∑ i j X i X j L i j + ∑ i j k X i X j X k L i j k G_{m} =\sum_{i}^{} X_{i} \ln_{}{X_{i}} +RT\sum_{i}^{} X_{i} \ln_{}{X_{i}} +\sum_{ij}^{} X_{i} X_{j}L_{ij} +\sum_{ijk}^{} X_{i} X_{j} X_{k}L_{ijk} Gm=∑iXilnXi+RT∑iXilnXi+∑ijXiXjL