论文标题:
大规模语言模型用于漏洞检测与修复:文献综述与未来研究方向
这篇论文的标题是《Large Language Model for Vulnerability Detection and Repair: Literature Review and the Road Ahead》,作者包括Xin Zhou、Sicong Cao、Xiaobing Sun和David Lo。其中,Xin Zhou和David Lo来自新加坡管理大学(Singapore Management University)的计算与信息系统学院(School of Computing and Information Systems),Sicong Cao和Xiaobing Sun来自中国扬州大学(Yangzhou University)的信息工程学院(School of Information Engineering)。
2024年4月6日提交到arXiv预印本服务
https://ar5iv.labs.arxiv.org/html/2404.02525
摘要:
论文系统性地回顾了大规模语言模型(LLMs)在软件工程中漏洞检测和修复任务中的应用,分析了2018年至今的36篇文献,涵盖了相关研究的模型、适应技术及面临的挑战。论文提出了三个主要研究问题,并指出未来的研究机会。漏洞检测和修复是软件安全领域的重要任务,传统方法往往存在误报率高和难以应对多样化漏洞的缺点。近
1. 引言:
介绍了软件漏洞的危害性及自动化检测和修复的必要性。传统方法存在误报率高、难以应对多样化漏洞的问题。LLM因其在自然语言和软件工程任务中的成功,成为提升漏