量子计算 14 量子通用门

上回书学习了经典可逆通用门,主要是Toffoli/CCNOT门和Fredkin/CSWAP门,其中Toffoli/CCNOT门不仅可以实现所有的Boolean函数,还能实现所有的可逆或permutation操作;因为量子门都是可逆的,这两个门在量子里面同样适用。

1 经典门与量子门

经典门和量子门的区别在于其适用的操作对象,经典门在此仅讨论经典可逆门。

  • 以两个比特为例,经典比特的可能状态为 00 , 01 , 10 , 11 00, 01, 10, 11 00,01,10,11四种,其实相当于一个只含 0 0 0 1 1 1的单位向量,比如状态为00时,其向量为 [ 1 , 0 , 0 , 0 ] ⊤ [1, 0, 0, 0]^{\top} [1,0,0,0],而一个经典可逆门,是将原来的四种状态与重新排列后的这四种状态的对应起来的变换,因此一个经典可逆门就是一个permutation矩阵,比如Toffoli/CCNOT和Fredkin/CSWAP门;而Fredkin/CSWAP的特点就是所对应的前后状态的1的数目一样,比如01只能对应10或01,而00和11只能保持不变。

  • 而两个量子比特的状态是 α 0 ∣ 00 ⟩ + α 1 ∣ 01 ⟩ + α 2 ∣ 10 ⟩ + α 3 ∣ 11 ⟩ \alpha_0|00\rangle+\alpha_1|01\rangle+\alpha_2|10\rangle+\alpha_3|11\rangle α000+α101+α210+α311,其状态由四个量子幅组成的向量 [ α 0 , α 1 , α 2 , α 3 ] ⊤ [\alpha_0, \alpha_1, \alpha_2, \alpha_3]^{\top} [α0,α1,α2,α3]来表示,当然经典门也可以应用在量子比特身上,作用效果就相当于将基的顺序变一下,比如原来是 ∣ 01 ⟩ |01\rangle 01的变换成了 ∣ 10 ⟩ |10\rangle 10
    而体现在酉矩阵上,简单来说就不是permutation矩阵的酉矩阵,比如Hadamard门,Rotation gate R θ R_\theta Rθ门,Phase shift R ϕ R_\phi Rϕ门;
    而一般的量子门也相当于把量子幅的基进行了变换,这对应与经典门只是把基重新排列了一下;
    因此经典门无法对量子叠加产生影响,因为改变量子叠加需要改变 α 1 ∣ 0 ⟩ + α 2 ∣ 1 ⟩ \alpha_1|0\rangle+\alpha_2|1\rangle α10+α21整体,而不是仅调换一下 ∣ 0 ⟩ , ∣ 1 ⟩ |0\rangle,|1\rangle 0,1的顺序。

2 量子通用门 Universal gates

定理: { CNOT , all 1-qubit gates } \{\text{CNOT}, \text{all 1-qubit gates}\} {CNOT,all 1-qubit gates} is universal

{ CNOT , all 1-qubit gates } \{\text{CNOT}, \text{all 1-qubit gates}\} {CNOT,all 1-qubit gates}是严格意义上的通用量子门,因为这个门集合可以产生所有的酉矩阵。

Proof sketch

证明简单介绍一下

  • 任意一个酉矩阵都可以分解成 2 × 2 2\times2 2×2的旋转矩阵,这根据现代的givens rotation可以证明;
  • 然后证明可以用Toffoli/CCNOT和任意1-qubit门表达givens rotation
  • 然后证明CNOT和任意1-qubit门可以表达Toffoli/CCNOT门

3 近似通用门 (Approximate-universal gates)

严格意义上的通用门有个问题,所有的1-qubit门有不可数无穷多个,或者说有连续的无穷多个,比如一个旋转门 R θ R_\theta Rθ;我们希望寻找一个有限的量子通用门,但是有限的通用量子门只能表达可数无穷多个酉变换,也就无法准确的表达所有的酉变换,因此介绍近似通用门的概念(Approximate-universal gates)

一个门集合G称为近似通用门(Approximate-universal gates),如果对于任意酉变换 U U U,任意 ε > 0 \varepsilon>0 ε>0,我们都可以用G中的门近似一个酉变换 U ′ U' U,使得 ∣ ⟨ v ∣ U ∣ w ⟩ − ⟨ v ∣ U ′ ∣ w ⟩ ∣ < ε |\langle v|U|w\rangle-\langle v|U'|w\rangle|<\varepsilon vUwvUw<ε

定理 Shi (2002): { CNOT , R θ = π 8 , S } \{\text{CNOT}, R_{\theta=\frac{\pi}{8}},S\} {CNOT,Rθ=8π,S} { toffoli/CCNOT, H,  S } \{\text{toffoli/CCNOT, H, }S\} {toffoli/CCNOT, H, S}是近似通用门

另外,如果你随便写一个2-qubit门,那有百分百的概率这是个近似通用门,所以其实不通用的门才是较少的。

4 编码通用门 (Encoded-universal gates)

编码通用门 (Encoded-universal gates)是更为放松的定义,即我们可以用编码通用门来有效率的进行任意量子计算;比如,虽然对于实数门,我们只能产生实数酉矩阵,但是可以证明,对于任意n-qubit复数量子电路,可以用一个(n+1)-qubit的实数量子电路来模拟。

定理: { CNOT , R θ = π 8 } \{\text{CNOT}, R_{\theta=\frac{\pi}{8}}\} {CNOT,Rθ=8π}, { Toffoli/CCNOT, H } \{\text{Toffoli/CCNOT, H}\} {Toffoli/CCNOT, H}是编码通用门

5 非通用门 (Gates that are not universal)

有哪些门,连编码通用门都不是呢?

三种非通用门

  • 1-qubit门,比如 { H , R θ = π 8 …   } + qubits swaps only \{\text{H}, R_{\theta=\frac{\pi}{8}}\dots\}+\text{qubits swaps only} {H,Rθ=8π}+qubits swaps only;这个好理解,仅对一个qubit操作都无法产生纠缠(entanglement),所以不通用;
  • Classical门,比如 { NOT, CNOT, Toffoli, Fredkin …   } + diagonal gates only \{\text{NOT, CNOT, Toffoli, Fredkin}\dots\}+\text{diagonal gates only} {NOT, CNOT, Toffoli, Fredkin}+diagonal gates only,经典门和对角酉矩阵,都无法对叠加项(superposition)产生影响;
  • Stabilizer门, { CNOT, H,  S } \{\text{CNOT, H, }S\} {CNOT, H, S},这里有个定理Gottesman & Knill (1996)说仅由Stabilizer门组成的电路可以由经典计算机在多项式时间内模拟,即只能产生离散的量子态,这种电路可以做teleportation,做CHSH游戏,但是就不能进行任意量子计算;不过后面在量子纠错会进一步介绍;

Open problem

是否所有的非通用门都是上述三种或其结合(Conjugate)呢?

这个问题现在还没被解决,但是可以知道的是,量子通用门是很容易得到的。

Universal gates, Quizzes

回答下面哪些不是通用门(近似通用门)

  • { CNOT, All single qubit gates } \{\text{CNOT, All single qubit gates}\} {CNOT, All single qubit gates},是严格通用门
  • { Toffoli, Hadamard } \{\text{Toffoli, Hadamard}\} {Toffoli, Hadamard}, 不是通用门,因为没有虚数
  • { Toffoli, S } \{\text{Toffoli, S}\} {Toffoli, S},不是通用门,因为Toffoli是经典门,S是对角门,无法创建叠加
  • { Toffoli, S, Hadamard } \{\text{Toffoli, S, Hadamard}\} {Toffoli, S, Hadamard},是通用门,包括了Stabilizer门 { CNOT, H, S } \{\text{CNOT, H, S}\} {CNOT, H, S}和不是Stabilizer门的Toffoli
  • { Hadamard, S, Controlled Z } \{\text{Hadamard, S, Controlled Z}\} {Hadamard, S, Controlled Z},不是通用门,相当于Stabilizer门 { CNOT, H, S } \{\text{CNOT, H, S}\} {CNOT, H, S},因为Controlled Z就是S的平方
  • { Controlled H, Controlled S, NOT } \{\text{Controlled H, Controlled S, NOT}\} {Controlled H, Controlled S, NOT},是通用门,包括了Stabilizer门 { CNOT, H, S } \{\text{CNOT, H, S}\} {CNOT, H, S}

附录 常用门

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值