单量子门分解(使用有限的单量子门来近似模拟任意的单量子门)

UTF8gbsn

Introduction

首先我们介绍一下在量子计算集中单量子比特U门。它为一个定义在复数域上的酉矩阵。

( c 00 c 01 c 10 c 11 ) , U U † = I \left( \begin{array}{cc} c_{00} & c_{01} \\ c_{10} & c_{11} \end{array} \right),UU^{\dagger}=I (c00c10c01c11),UU=I

通过定义我们可以发现,这样的U门有无数个。但是在实现量子计算机的时候,工程上我
们只能实现有限个单qubit的U门。这样就出现了,使用有限的单量子门来近似模拟任意的
单量子门。其中 U † U^{\dagger} U是U的共轭转置矩阵。

本文主要根据《Quantum Computation and Quantum Information》
书籍中的内容总结而
来。是一个简化的读书笔记。其中部分细节不明之处还望见谅。可以参考书籍或留言。

Brief Review

Question

本文假设,在工程上实现了两种单qubit门,H和T。这两种门的如下, H = ( 1 / 2 1 / 2 1 / 2 − 1 / 2 ) , T = ( e − i π 8 0 0 e i π 8 ) H=\left( \begin{array}{cc} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{array} \right),T=\left( \begin{array}{cc} e^{-i\frac{\pi}{8}} & 0 \\ 0 & e^{i \frac{\pi}{8}} \end{array} \right) H=(1/2 1/2 1/2 1/2 ),T=(ei8π00ei8π)

而我们需要使用这两种门来近似任意的U门。当然这种近似模拟,是有一定的误差的。
( c 00 c 01 c 10 c 11 ) , U U † = I \left( \begin{array}{cc} c_{00} & c_{01} \\ c_{10} & c_{11} \end{array} \right),UU^{\dagger}=I (c00c10c01c11),UU=I

Steps Overview

  1. 首先,我们先来陈述一个定理。我们先不去证明它。只是把它作为已知的内容。这
    样可以把脉络梳理得简单清楚。

    U = R n ^ ( β ) R m ^ ( γ ) R n ^ ( δ ) U=R_{\widehat{n}}(\beta)R_{\widehat{m}}(\gamma)R_{\widehat{n}}(\delta) U=Rn (β)Rm (γ)Rn (δ)

    我们来解释一下,这个定理。给定三维空间中的任意两个不平行的轴 m ^ , n ^ \widehat{m}, \widehat{n} m ,n ,那么任意的U门可以分解为绕这个两个轴的三个旋转门。其中
    R n ^ ( β ) R_{\widehat{n}}(\beta) Rn (β)表示绕 n ^ \widehat{n} n ,旋转 β \beta β。且 R R R是一些U门,也就
    是说他们都是一些单量子门。

  2. 我们使用H,T来近似构建,任意旋转角度的 R n ^ ( θ ) , R m ^ ( β ) R_{\widehat{n}}(\theta),R_{\widehat{m}}(\beta) Rn (θ),Rm (β),其中
    n ^ ≃ ( c o s ( π / 8 ) , s i n ( π / 8 ) , c o s ( π / 8 ) ) , m ^ ≃ ( c o s ( π / 8 ) , − s i n ( π / 8 ) , c o s ( π / 8 ) ) \widehat{n}\simeq (cos(\pi/8),sin(\pi/8), cos(\pi/8)),\widehat{m}\simeq (cos(\pi/8),-sin(\pi/8), cos(\pi/8)) n (cos(π/8),sin(π/8),cos(π/8)),m (cos(π/8),sin(π/8),cos(π/8)),后面我们会讲为什么是近似。如果我们能
    近似模拟任意旋转角度的 R n ^ ( θ ) , R m ^ ( β ) R_{\widehat{n}}(\theta),R_{\widehat{m}}(\beta) Rn (θ),Rm (β)。我们
    就可一个根据上面的定理,实现任意的U。这就是基本的逻辑,那么下面我们来看如何
    实现任意旋转角度的 R n ^ ( θ ) , R m ^ ( β ) R_{\widehat{n}}(\theta),R_{\widehat{m}}(\beta) Rn (θ),Rm (β)

Rotate

这一小节我们来看看如何近似实现任意角度的 R n ^ ( θ ) , R m ^ ( β ) R_{\widehat{n}}(\theta),R_{\widehat{m}}(\beta) Rn (θ),Rm (β)

Paulli Matrix

首先我们先来介绍一下几个常用的U门

X = ( 0 1 1 0 ) , Y = ( 0 − i i 0 ) , Z = ( 1 0 0 − 1 ) X=\left( \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right),Y=\left( \begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right),Z=\left( \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) X=(0110),Y=(0ii0),Z=(1001)

根据这些U门,我们可以来写出绕 x , y , z x,y,z x,y,z轴旋转的U矩阵,如下(还是先把它们作为已知的
公式,有空我们在写证明过程。)

R x ( θ ) = e − i θ X / 2 = c o s ( θ / 2 ) I − i ⋅ s i n ( θ / 2 ) X = ( c o s ( θ 2 ) − i ⋅ s i n ( θ 2 ) − i ⋅ s i n ( θ 2 ) c o s ( θ 2 ) ) R_x(\theta)=e^{-i\theta X/2}=cos(\theta/2)I-i\cdot sin(\theta/2)X=\left( \begin{array}{cc} cos(\frac{\theta}{2}) & -i\cdot sin(\frac{\theta}{2}) \\ -i\cdot sin(\frac{\theta}{2}) & cos(\frac{\theta}{2}) \end{array} \right) Rx(θ)=eiθX/2=cos(θ/2)Iisin(θ/2)X=(cos(2θ)isin(2θ)isin(2θ)cos(2θ))
R y ( θ ) = e − i θ Y / 2 = c o s ( θ / 2 ) I − i ⋅ s i n ( θ / 2 ) Y = ( c o s ( θ 2 ) − s i n ( θ 2 ) s i n ( θ 2 ) c o s ( θ 2 ) ) R_y(\theta)=e^{-i\theta Y/2}=cos(\theta/2)I-i\cdot sin(\theta/2)Y=\left( \begin{array}{cc} cos(\frac{\theta}{2}) & -sin(\frac{\theta}{2}) \\ sin(\frac{\theta}{2}) & cos(\frac{\theta}{2}) \end{array} \right) Ry(θ)=eiθY/2=cos(θ/2)Iisin(θ/2)Y=(cos(2θ)sin(2θ)sin(2θ)cos(2θ))
R z ( θ ) = e − i θ Z / 2 = c o s ( θ / 2 ) I − i ⋅ s i n ( θ / 2 ) Z = ( e − i θ / 2 0 0 e i θ / 2 ) R_z(\theta)=e^{-i\theta Z/2}=cos(\theta/2)I-i\cdot sin(\theta/2)Z=\left( \begin{array}{cc} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{array} \right) Rz(θ)=eiθZ/2=cos(θ/2)Iisin(θ/2)Z=(eiθ/200eiθ/2)

有了这些概念之后,我们还需要写出一个公式它表示绕任意一个轴 n ^ = ( n x , n y , n z ) \widehat{n}=(n_x,n_y,n_z) n =(nx,ny,nz)旋转 θ \theta θ的U门。我们仍然
把它作为已知的东西。证明放在以后来写。

R n ^ = e − i θ n ^ ⋅ σ → / 2 = c o s ( θ 2 ) I − i ⋅ s i n ( θ 2 ) ( n x X + n y Y + n z Z ) R_{\widehat{n}}=e^{-i\theta \widehat{n}\cdot \overrightarrow{\sigma}/2}=cos(\frac{\theta}{2})I-i \cdot sin(\frac{\theta}{2})(n_xX+n_yY+n_zZ) Rn =eiθn σ /2=cos(2θ)Iisin(2θ)(nxX+nyY+nzZ)
其中, σ → = ( X , Y , Z ) \overrightarrow{\sigma}=(X,Y,Z) σ =(X,Y,Z),它是一个向量。

n Rotate

我们首先来构建 R n ^ ( θ ) R_{\widehat{n}}(\theta) Rn (θ),让我们来一步一步的算。怎么靠H,T来构
R n ^ ( θ ) R_{\widehat{n}}(\theta) Rn (θ)

  1. 首先让我们先来看看两个辅助的U门。

    • e x p ( − i π 8 Z ) = c o s ( π 8 ) I − i ⋅ s i n ( π 8 ) Z = ( e − i π 8 0 0 e i π 8 ) exp(-i \frac{\pi}{8}Z)=cos(\frac{\pi}{8})I-i \cdot sin(\frac{\pi}{8})Z=\left( \begin{array}{cc} e^{-i\frac{\pi}{8}} & 0 \\ 0 & e^{i \frac{\pi}{8}} \end{array} \right) exp(i8πZ)=cos(8π)Iisin(8π)Z=(ei8π00ei8π)

      这个门就是绕Z轴旋转了 π 4 \frac{\pi}{4} 4π[1],这个门实际上就是T门

    • e x p ( − i π 8 X ) = c o s ( π 8 ) I − i ⋅ s i n ( π 8 ) X = H T H exp(-i \frac{\pi}{8}X)=cos(\frac{\pi}{8})I-i\cdot sin(\frac{\pi}{8})X=HTH exp(i8πX)=cos(8π)Iisin(8π)X=HTH

  2. 有了上面这连个门。我们可以进一步做下面的变换

    e x p ( − i π 8 Z ) e x p ( − i π 8 X ) = ( c o s ( π 8 ) I − i ⋅ s i n ( π 8 ) Z ) ( c o s ( π 8 ) I − i ⋅ s i n ( π 8 ) X ) exp(-i \frac{\pi}{8}Z)exp(-i \frac{\pi}{8}X)=(cos(\frac{\pi}{8})I-i \cdot sin(\frac{\pi}{8})Z)(cos(\frac{\pi}{8})I-i\cdot sin(\frac{\pi}{8})X) exp(i8πZ)exp(i8πX)=(cos(8π)Iisin(8π)Z)(cos(8π)Iisin(8π)X)
    = c o s 2 ( π 8 ) I − i [ c o s ( π 8 ) X + s i n ( π 8 ) Y + c o s ( π 8 ) Z ] s i n ( π 8 ) =cos^2(\frac{\pi}{8})I-i[cos(\frac{\pi}{8})X+sin(\frac{\pi}{8})Y+cos(\frac{\pi}{8})Z]sin(\frac{\pi}{8}) =cos2(8π)Ii[cos(8π)X+sin(8π)Y+cos(8π)Z]sin(8π)
    e x p ( − i π 8 Z ) e x p ( − i π 8 X ) = T ( H T H ) = T H T H exp(-i \frac{\pi}{8}Z)exp(-i \frac{\pi}{8}X)=T(HTH)=THTH exp(i8πZ)exp(i8πX)=T(HTH)=THTH

    参考3.1中我们发现实际上 e x p ( − i π 8 Z ) e x p ( − i π 8 X ) exp(-i \frac{\pi}{8}Z)exp(-i \frac{\pi}{8}X) exp(i8πZ)exp(i8πX)是一
    个绕某个轴转动一定角度的U门这个轴近似是 ( c o s ( π 8 ) , s i n ( π 8 ) , c o s ( π 8 ) ) (cos(\frac{\pi}{8}), sin(\frac{\pi}{8}), cos(\frac{\pi}{8})) (cos(8π),sin(8π),cos(8π)),旋转的角度 θ \theta θ
    c o s ( θ / 2 ) = c o s 2 ( π 8 ) cos(\theta/2)=cos^2(\frac{\pi}{8}) cos(θ/2)=cos2(8π)。注意我们准确的表示出了 θ \theta θ但是没有
    准确的表示出 n ^ \widehat{n} n ,是因为系数
    c o s 2 ( π 8 ) , s i n ( π 8 ) cos^2(\frac{\pi}{8}),sin(\frac{\pi}{8}) cos2(8π),sin(8π),不是一对正弦余弦值 ( c o s 2 + s i n 2 = 1 ) (cos^2+sin^2=1) (cos2+sin2=1)
    所以,后面 s i n ( π 8 ) sin(\frac{\pi}{8}) sin(8π)需要同 ( c o s ( π 8 ) , s i n ( π 8 ) , c o s ( π 8 ) ) (cos(\frac{\pi}{8}), sin(\frac{\pi}{8}), cos(\frac{\pi}{8})) (cos(8π),sin(8π),cos(8π)),配凑出
    s i n ( θ 2 ) = 1 − c o s 4 ( π 8 ) sin(\frac{\theta}{2})=\sqrt{1-cos^4(\frac{\pi}{8})} sin(2θ)=1cos4(8π) 所以这条轴不是 ( c o s ( π 8 ) , s i n ( π 8 ) , c o s ( π 8 ) ) (cos(\frac{\pi}{8}), sin(\frac{\pi}{8}), cos(\frac{\pi}{8})) (cos(8π),sin(8π),cos(8π)),但是和这条轴接近。

  3. 我们总结一下, U = T H T H U=THTH U=THTH门的作用。它可以绕近似 n ^ = ( c o s ( π 8 ) , s i n ( π 8 ) , c o s ( π 8 ) ) \widehat{n}=(cos(\frac{\pi}{8}), sin(\frac{\pi}{8}), cos(\frac{\pi}{8})) n =(cos(8π),sin(8π),cos(8π)),
    一个角度 θ = 2 a r c c o s ( c o s 2 ( π / 8 ) ) \theta=2arccos(cos^2(\pi/8)) θ=2arccos(cos2(π/8))

  4. 我们现在来使用 R n ^ ( θ ) R_{\widehat{n}}(\theta) Rn (θ)近似 R n ^ ( α ) R_{\widehat{n}}(\alpha) Rn (α)。其
    θ = 2 a r c c o s ( c o s 2 ( π / 8 ) ) \theta=2arccos(cos^2(\pi/8)) θ=2arccos(cos2(π/8)), n ^ = ( c o s ( π 8 ) , s i n ( π 8 ) , c o s ( π 8 ) ) \widehat{n}=(cos(\frac{\pi}{8}), sin(\frac{\pi}{8}), cos(\frac{\pi}{8})) n =(cos(8π),sin(8π),cos(8π)), α \alpha α是任意角度。注意这个部分是
    关键。可能我这里写得不是很清楚。如果不是很明白,请参考书籍和相关其它资料或留
    言。

    • 对于任意的 δ > 0 , N = 2 π δ \delta>0, N=\frac{2\pi}{\delta} δ>0,N=δ2π,我们定义 θ k ∈ [ 0 , 2 π ) , θ k = ( k θ ) m o d 2 π \theta_k\in [0, 2\pi),\theta_k=(k\theta)mod 2\pi θk[0,2π),θk=(kθ)mod2π.
      那么由抽屉原理可得,存在不同的 j , k j,k j,k使得
      ∣ θ k − θ j ∣ ⩽ 2 π N &lt; δ |\theta_k-\theta_j|\leqslant \frac{2\pi}{N}&lt;\delta θkθjN2π<δ
      不失去一般性令 k &gt; j k&gt;j k>j,我们可以从这里可以推导出 θ k − j &lt; δ \theta_{k-j}&lt;\delta θkj<δ。这里如
      果看不明白,可以稍微画图思考下或留言。

    • 这样,我们可以看到 θ l ( k − j ) \theta_{l(k-j)} θl(kj)的序列,其中 l ∈ ( 0 , 1 , 2 , . . . ) l\in (0,1,2,...) l(0,1,2,...)。这
      个序列将会覆盖掉整个 2 π 2\pi 2π,而序列的相邻两项之间的差不大于 δ \delta δ。即
      θ l ( k − j ) \theta_{l(k-j)} θl(kj)可以以精度 δ \delta δ逼近 2 π 2\pi 2π上的所有位置。

    • 也就是说存在某个N,使得 R n ^ N ( θ ) R_{\widehat{n}}^N(\theta) Rn N(θ),在误差限
      ϵ \epsilon ϵ下,逼近 R n ^ ( α ) R_{\widehat{n}}(\alpha) Rn (α)

到这里我们就完成了最重要的工作,使用T,H,来逼近任意的 R n ^ ( α ) R_{\widehat{n}}(\alpha) Rn (α)

m Rotate

我们再来构建 R m ^ ( α ) R_{\widehat{m}}(\alpha) Rm (α),我们稍微的使用H门来变换一下
R n ^ ( α ) R_{\widehat{n}}(\alpha) Rn (α),就可以得到 R m ^ ( α ) R_{\widehat{m}}(\alpha) Rm (α).

H R n ^ ( α ) H = R m ^ ( α ) HR_{\widehat{n}}(\alpha)H=R_{\widehat{m}}(\alpha) HRn (α)H=Rm (α)

而近似轴为, m ^ ≃ ( c o s ( π 8 ) , s i n ( π 8 ) , c o s ( π 8 ) ) \widehat{m}\simeq (cos(\frac{\pi}{8}), sin(\frac{\pi}{8}), cos(\frac{\pi}{8})) m (cos(8π),sin(8π),cos(8π))

Arbitrary Rotation

我们有了 R n ^ ( α ) , R m ^ ( α ) R_{\widehat{n}}(\alpha),R_{\widehat{m}}(\alpha) Rn (α),Rm (α),而且
n ^ , m ^ \widehat{n},\widehat{m} n ,m 不平行。那么我们就可以利用2.2中的定理来构建,任意的U门

U = R n ^ ( β ) R m ^ ( γ ) R n ^ ( δ ) U=R_{\widehat{n}}(\beta)R_{\widehat{m}}(\gamma)R_{\widehat{n}}(\delta) U=Rn (β)Rm (γ)Rn (δ)

我们来描述一下具体步骤

  1. 把U在数学上分解为
    U = R n ^ ( β ) R m ^ ( γ ) R n ^ ( δ ) U=R_{\widehat{n}}(\beta)R_{\widehat{m}}(\gamma)R_{\widehat{n}}(\delta) U=Rn (β)Rm (γ)Rn (δ)

  2. 然后根据部门前面提到的分别实现,我们用T,H来近似下面的U门。
    R n ^ ( β ) , R m ^ ( γ ) , R n ^ ( δ ) R_{\widehat{n}}(\beta),R_{\widehat{m}}(\gamma),R_{\widehat{n}}(\delta) Rn (β),Rm (γ),Rn (δ)

  3. 当然具体的步骤会很复杂。也可能有的们没有多项式复杂度的替换。所以关于任意
    门分解的问题还有很多其它内容。需要扩展阅读更多的书籍和论文。

The End

我们这里留下了很多坑,需要后面慢慢的填。因为很多公式定理都是直接给出。没有证明,
但是对于理解单U门的近似逼近已经做到了比较清楚的解释。

感谢

[1]weixin_41409816

  • 4
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值