基于Spark的大数据空间分析与运算方法研究

本文探讨了如何利用Spark进行大数据空间分析与运算,包括缓冲区建立、缓冲区分析、叠加分析、裁剪和合并等关键步骤,详细介绍了各个步骤的解决方案和操作过程。
摘要由CSDN通过智能技术生成

利用大数据计算做空间分析与运算,提供缓冲区分析、叠加分析、裁剪、合并等空间分析与运算接口和调用示例。

1、缓冲区建立

任务要求:利用大数据计算,对大数据库中存储的点、线、面等空间数据,自动建立其周围一定宽度范围内的缓冲区多边形图层

解决方案:

  • 以符合GeoJson数据格式的空间空间要素字符串为输入对象
  • 将GeoJson字符串进行切分,并判断每一个GeoJson字符串属于什么图形要素类型(点/线/面),根据图形要素类型建立Geometry类型要素(Point、MultiPoint、Polyline、Polygon),将产生的所有Geometry类型要素放在一个list集合,将List<Geometry>及缓冲区半径传入缓冲区建立函数CreateBuffer
  • 在CreateBuffer函数中,由List<Geometry>形成RDD,RDD内元素为Geometry类型要素
  • 使用map算子对上一步RDD每一个Geometry类型要素进行缓冲区建立,map算子中使用逻辑函数CreatBuffer
  • 在map算子中对每一个Geometry类型要素传入变量都返回一个GeoJson要素字符串
  • 将RDD使用动作算子collect形成List<String>返回

2、缓冲区分析

任务要求&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值