dq轴坐标系下的电路方程
dq轴坐标系是一种常见的电路方程,但是再dq轴坐标系下电路元件的电压电流dq轴存在一定的耦合,本文针对三相电路推导了dq轴坐标系下的电路电路方程进行一个推导,首先先列出来派克变换的公式
派克变换
[ A d A q A 0 ] = 2 3 [ cos ( θ ) cos ( θ − 2 π / 3 ) cos ( θ + 2 π / 3 ) − sin ( θ ) − sin ( θ − 2 π / 3 ) − sin ( θ + 2 π / 3 ) 1 / 2 1 / 2 1 / 2 ] [ A a A b A c ] \left[\begin{array}{c}A_d\\A_q\\A_0 \end{array}\right]=\frac{2}{3}\left[\begin{matrix}\cos(\theta)&\cos(\theta-2\pi/3)&\cos(\theta+2\pi/3)\\ -\sin(\theta)&-\sin(\theta-2\pi/3)&-\sin(\theta+2\pi/3)\\1/2&1/2&1/2 \end{matrix}\right]\left[\begin{array}{c}A_a\\A_b\\A_c \end{array}\right] ⎣⎡AdAqA0⎦⎤=32⎣⎡cos(θ)−sin(θ)1/2cos(θ−2π/3)−sin(θ−2π/3)1/2cos(θ+2π/3)−sin(θ+2π/3)1/2⎦⎤⎣⎡AaAbAc⎦⎤
即 A d q 0 = P A a b c A_{dq0}=PA_{abc} Adq0=PAabc
派克反变换
[ A a A b A c ] = [ cos ( θ ) − sin ( θ ) 1 cos ( θ − 2 π / 3 ) − sin ( θ − 2 π / 3 ) 1 cos ( θ + 2 π / 3 ) − sin ( θ + 2 π / 3 ) 1 ] [ A a A b A c ] \left[\begin{array}{c}A_a\\A_b\\A_c \end{array}\right]=\left[\begin{matrix}\cos(\theta)&-\sin(\theta)&1\\ \cos(\theta-2\pi/3)&-\sin(\theta-2\pi/3)&1\\\cos(\theta+2\pi/3)&-\sin(\theta+2\pi/3)&1\end{matrix}\right]\left[\begin{array}{c}A_a\\A_b\\A_c \end{array}\right] ⎣⎡AaAbAc⎦⎤=⎣⎡cos(θ)cos(θ−2π/3)cos(θ+2π/3)−sin(θ)−sin(θ−2π/3)−sin(θ+2π/3)111⎦⎤⎣⎡AaAbAc⎦⎤
即 A a b c = P − 1 A d q 0 A_{abc}=P^{-1}A_{dq0} Aabc=P−1Adq0
电阻电路
电阻电路作为最简单的的dq变换表达式,其电压电流的dq轴之间是没有耦合的,先放一张三相电阻电路的图
{ u a = v a + R × i a u b = v b + R × i b u c = v c + R × i c \left\{\begin{array}{c} u_a=v_a+R\times i_a\\ u_b=v_b+R\times i_b\\ u_c=v_c+R\times i_c\\ \end{array}\right. ⎩⎨⎧ua=va+R×iau