dq轴坐标系下的电路方程

dq轴坐标系下的电路方程

dq轴坐标系是一种常见的电路方程,但是再dq轴坐标系下电路元件的电压电流dq轴存在一定的耦合,本文针对三相电路推导了dq轴坐标系下的电路电路方程进行一个推导,首先先列出来派克变换的公式

派克变换
[ A d A q A 0 ] = 2 3 [ cos ⁡ ( θ ) cos ⁡ ( θ − 2 π / 3 ) cos ⁡ ( θ + 2 π / 3 ) − sin ⁡ ( θ ) − sin ⁡ ( θ − 2 π / 3 ) − sin ⁡ ( θ + 2 π / 3 ) 1 / 2 1 / 2 1 / 2 ] [ A a A b A c ] \left[\begin{array}{c}A_d\\A_q\\A_0 \end{array}\right]=\frac{2}{3}\left[\begin{matrix}\cos(\theta)&\cos(\theta-2\pi/3)&\cos(\theta+2\pi/3)\\ -\sin(\theta)&-\sin(\theta-2\pi/3)&-\sin(\theta+2\pi/3)\\1/2&1/2&1/2 \end{matrix}\right]\left[\begin{array}{c}A_a\\A_b\\A_c \end{array}\right] AdAqA0=32cos(θ)sin(θ)1/2cos(θ2π/3)sin(θ2π/3)1/2cos(θ+2π/3)sin(θ+2π/3)1/2AaAbAc
A d q 0 = P A a b c A_{dq0}=PA_{abc} Adq0=PAabc

派克反变换
[ A a A b A c ] = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) 1 cos ⁡ ( θ − 2 π / 3 ) − sin ⁡ ( θ − 2 π / 3 ) 1 cos ⁡ ( θ + 2 π / 3 ) − sin ⁡ ( θ + 2 π / 3 ) 1 ] [ A a A b A c ] \left[\begin{array}{c}A_a\\A_b\\A_c \end{array}\right]=\left[\begin{matrix}\cos(\theta)&-\sin(\theta)&1\\ \cos(\theta-2\pi/3)&-\sin(\theta-2\pi/3)&1\\\cos(\theta+2\pi/3)&-\sin(\theta+2\pi/3)&1\end{matrix}\right]\left[\begin{array}{c}A_a\\A_b\\A_c \end{array}\right] AaAbAc=cos(θ)cos(θ2π/3)cos(θ+2π/3)sin(θ)sin(θ2π/3)sin(θ+2π/3)111AaAbAc
A a b c = P − 1 A d q 0 A_{abc}=P^{-1}A_{dq0} Aabc=P1Adq0

电阻电路

电阻电路作为最简单的的dq变换表达式,其电压电流的dq轴之间是没有耦合的,先放一张三相电阻电路的图
在这里插入图片描述 { u a = v a + R × i a u b = v b + R × i b u c = v c + R × i c \left\{\begin{array}{c} u_a=v_a+R\times i_a\\ u_b=v_b+R\times i_b\\ u_c=v_c+R\times i_c\\ \end{array}\right. ua=va+R×iau

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hello_Mr_Young

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值