四、BLDC矢量控制基础知识:dq轴电压方程

dq轴方程推导

通过阅读各种资料,将学到的关于dq轴方程的知识整理一下,并自己推导了一遍dq轴方程。



前言

之前的对dq轴方程的理解有误,推导出的dq轴电压方程 L d = L q L_d=L_q Ld=Lq,后来学习凸极效应,它将导致 L d < L q L_d<L_q Ld<Lq。这里将学到的知识加以整理归纳并自行推导一遍dq轴的电压方程,以便真正掌握它。


一、原始电压方程

[ u a u b u c ] = R s [ i a i b i c ] + d d t { [ L a a M a b M a c M b a L b b M b c M c a M c b L c c ] [ i a i b i c ] } + d d t [ ψ f a ψ f b ψ f c ] \begin{bmatrix}u_a\\u_b\\u_c\end{bmatrix} =R_s\begin{bmatrix}i_a\\i_b\\i_c\end{bmatrix} +\frac{d}{dt}\left\{\begin{bmatrix}L_{aa}&M_{ab}&M_{ac}\\M_{ba}&L_{bb}&M_{bc}\\M_{ca}&M_{cb}&L_{cc}\end{bmatrix}\begin{bmatrix}i_a\\i_b\\i_c\end{bmatrix}\right\} +\frac{d}{dt}\begin{bmatrix}ψ_{fa}\\ψ_{fb}\\ψ_{fc}\end{bmatrix} uaubuc=Rsiaibic+dtdLaaMbaMcaMabLbbMcbMacMbcLcciaibic+dtdψfaψfbψfc
其中被微分的两项分别代表电流和永磁体的磁场。 ψ f a , ψ f b , ψ f c ψ_{fa},ψ_{fb},ψ_{fc} ψfa,ψfb,ψfc是永磁体转子在三相线圈上的磁链分量。
为方便书写用黑体表示矩阵,电感矩阵的负号定义请参考《三、BLDC矢量控制基础知识:三相线圈的电感矩阵》
L = L s 0 − L s 2 \bm{L=L_{s0}-L_{s2}} L=Ls0Ls2表示总的电感矩阵
L s 0 \bm{L_{s0}} Ls0表示电感矩阵的常量部分
L s 2 \bm{L_{s2}} Ls2表示电感矩阵的随电角度变化的部分
则方程简写为:
u a b c = R i a b c + d L i a b c d t + d ψ f a b c d t \begin{aligned} \bm{u_{abc}=Ri_{abc}+\frac{dLi_{abc}}{dt}+\frac{dψ_{fabc}}{dt}} \end{aligned} uabc=Riabc+dtdLiabc+dtdψfabc

二、对电压方程进行Clarke变换

上述方程两边进行Clarke变换(注意Clarke变换是常数矩阵):
u α β = C R i a b c + C d L i a b c d t + C d ψ f a b c d t = R i α β + d C L C − 1 C i a b c d t + d ψ f α β d t = R i α β + d C L C − 1 i α β d t + d ψ f α β d t \begin{aligned} &\bm{u_{\alpha\beta}=CRi_{abc}+C\frac{dLi_{abc}}{dt}+C\frac{dψ_{fabc}}{dt}}\\ &=\bm{Ri_{\alpha\beta}+\frac{dCLC^{-1}Ci_{abc}}{dt}+\frac{dψ_{f\alpha\beta}}{dt}}\\ &=\bm{Ri_{\alpha\beta}+\frac{dCLC^{-1}i_{\alpha\beta}}{dt}+\frac{dψ_{f\alpha\beta}}{dt}} \end{aligned} uαβ=CRiabc+CdtdLiabc+Cdtdψfabc=Riαβ+dtdCLC1Ciabc+dtdψfαβ=Riαβ+dtdCLC1iαβ+dtdψfαβ
下面需要先计算 C L C − 1 \bm{CLC^{-1}} CLC1才能往下讨论。
先计算电感常量部分:
C L s 0 C − 1 = L s 0 C [ 1 − 1 2 − 1 2 − 1 2 1 − 1 2 − 1 2 − 1 2 1 ] C − 1 \bm{CL_{s0}C^{-1}} =L_{s0}\bm{C}\begin{bmatrix}1&-\frac{1}{2}&-\frac{1}{2}\\-\frac{1}{2}&1&-\frac{1}{2}\\-\frac{1}{2}&-\frac{1}{2}&1\end{bmatrix}\bm{C^{-1}} CLs0C1=Ls0C121212112121211C1
计算的核心是矩阵乘积:
C [ 1 − 1 2 − 1 2 − 1 2 1 − 1 2 − 1 2 − 1 2 1 ] C − 1 = C { 3 2 [ 1 0 0 0 1 0 0 0 1 ] − 1 2 [ 1 1 1 1 1 1 1 1 1 ] } C − 1 = 3 2 [ 1 0 0 1 ] − 1 2 C [ 1 1 1 1 1 1 1 1 1 ] C − 1 \begin{aligned} \bm{C}\begin{bmatrix}1&-\frac{1}{2}&-\frac{1}{2}\\-\frac{1}{2}&1&-\frac{1}{2}\\-\frac{1}{2}&-\frac{1}{2}&1\end{bmatrix}\bm{C^{-1}} &=\bm{C}\left\{\frac{3}{2}\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}-\frac{1}{2}\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}\right\}\bm{C^{-1}}\\ &=\frac{3}{2}\begin{bmatrix}1&0\\0&1\end{bmatrix} -\frac{1}{2}\bm{C}\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}\bm{C^{-1}} \end{aligned} C121212112121211C1=C2310001000121111111111C1=23[1001]21C111111111C1
有一个很显然的地方: C [ 1 1 1 1 1 1 1 1 1 ] = [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] [ 1 1 1 1 1 1 1 1 1 ] = 0 \bm{C}\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}=\begin{bmatrix}1&-\frac{1}{2}&-\frac{1}{2}\\0&\frac{\sqrt3}{2}&-\frac{\sqrt3}{2}\end{bmatrix}\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}=\bm{0} C111111111=[102123 2123 ]111111111=0

于是得到公式: C L s 0 C − 1 = 3 2 L s 0 [ 1 0 0 1 ] … … 1 \bm{CL_{s0}C^{-1}}=\frac{3}{2}L_{s0}\begin{bmatrix}1&0\\0&1\end{bmatrix}……1 CLs0C1=23Ls0[1001]1

然后计算电感角度相关部分:
C L s 2 C − 1 = L s 2 C [ c o s ( 2 θ ) c o s ( 2 θ − 2 π 3 ) c o s ( 2 θ + 2 π 3 ) c o s ( 2 θ − 2 π 3 ) c o s ( 2 θ + 2 π 3 ) c o s ( 2 θ ) c o s ( 2 θ + 2 π 3 ) c o s ( 2 θ ) c o s ( 2 θ − 2 π 3 ) ] C − 1 \bm{CL_{s2}C^{-1}}= L_{s2}\bm{C}\begin{bmatrix}cos(2\theta)&cos(2\theta-\frac{2\pi}{3})&cos(2\theta+\frac{2\pi}{3})\\ cos(2\theta-\frac{2\pi}{3})&cos(2\theta+\frac{2\pi}{3})&cos(2\theta)\\ cos(2\theta+\frac{2\pi}{3})&cos(2\theta)&cos(2\theta-\frac{2\pi}{3})\end{bmatrix} \bm{C^{-1}} CLs2C1=Ls2Ccos(2θ)cos(2θ32π)cos(2θ+32π)cos(2θ32π)cos(2θ+32π)cos(2θ)cos(2θ+32π)cos(2θ)cos(2θ32π)C1

先对第一列进行变换:
注意第一列是一个三相矢量 A A A相的相位 φ = 2 θ \varphi=2\theta φ=2θ(参考《一、BLDC矢量控制基础知识:Clarke变换和Park变换》),直接看出结果:
C [ c o s ( 2 θ ) c o s ( 2 θ − 2 π 3 ) c o s ( 2 θ + 2 π 3 ) ] = 3 K 2 [ c o s ( 2 θ ) s i n ( 2 θ ) ] \bm{C}\begin{bmatrix}cos(2\theta)\\cos(2\theta-\frac{2\pi}{3})\\cos(2\theta+\frac{2\pi}{3})\end{bmatrix} =\frac{3K}{2}\begin{bmatrix}cos(2\theta)\\sin(2\theta)\end{bmatrix} Ccos(2θ)cos(2θ32π)cos(2θ+32π)=23K[cos(2θ)sin(2θ)]
按照这个思路,第二列是把三相矢量的 φ \varphi φ替换成 2 θ − 2 π 3 2\theta-\frac{2\pi}{3} 2θ32π,第三列是把三相矢量的 φ \varphi φ替换成 2 θ + 2 π 3 2\theta+\frac{2\pi}{3} 2θ+32π
因此我们有:
C [ c o s ( 2 θ ) c o s ( 2 θ − 2 π 3 ) c o s ( 2 θ + 2 π 3 ) c o s ( 2 θ − 2 π 3 ) c o s ( 2 θ + 2 π 3 ) c o s ( 2 θ ) c o s ( 2 θ + 2 π 3 ) c o s ( 2 θ ) c o s ( 2 θ − 2 π 3 ) ] C − 1 = 3 K 2 [ c o s ( 2 θ ) c o s ( 2 θ − 2 π 3 ) c o s ( 2 θ + 2 π 3 ) s i n ( 2 θ ) s i n ( 2 θ − 2 π 3 ) s i n ( 2 θ + 2 π 3 ) ] C − 1 \begin{aligned} &\bm{C}\begin{bmatrix}cos(2\theta)&cos(2\theta-\frac{2\pi}{3})&cos(2\theta+\frac{2\pi}{3})\\ cos(2\theta-\frac{2\pi}{3})&cos(2\theta+\frac{2\pi}{3})&cos(2\theta)\\ cos(2\theta+\frac{2\pi}{3})&cos(2\theta)&cos(2\theta-\frac{2\pi}{3})\end{bmatrix} \bm{C^{-1}}\\ &=\frac{3K}{2}\begin{bmatrix}cos(2\theta)&cos(2\theta-\frac{2\pi}{3})&cos(2\theta+\frac{2\pi}{3})\\ sin(2\theta)&sin(2\theta-\frac{2\pi}{3})&sin(2\theta+\frac{2\pi}{3})\end{bmatrix} \bm{C^{-1}} \end{aligned} Ccos(2θ)cos(2θ32π)cos(2θ+32π)cos(2θ32π)cos(2θ+32π)cos(2θ)cos(2θ+32π)cos(2θ)cos(2θ32π)C1=23K[cos(2θ)sin(2θ)cos(2θ32π)sin(2θ32π)cos(2θ+32π)sin(2θ+32π)]C1
上式转置,并使用Clarke变换的转置性质:
1 K C [ c o s ( 2 θ ) s i n ( 2 θ ) c o s ( 2 θ − 2 π 3 ) s i n ( 2 θ − 2 π 3 ) c o s ( 2 θ + 2 π 3 ) s i n ( 2 θ + 2 π 3 ) ] = 1 K C [ c o s ( 2 θ ) − c o s ( 2 θ + π 2 ) c o s ( 2 θ − 2 π 3 ) − c o s ( 2 θ + π 2 − 2 π 3 ) c o s ( 2 θ + 2 π 3 ) − c o s ( 2 θ + π 2 + 2 π 3 ) ] = 3 2 [ c o s ( 2 θ ) − c o s ( 2 θ + π 2 ) s i n ( 2 θ ) − s i n ( 2 θ + π 2 ) ] = 3 2 [ c o s ( 2 θ ) s i n ( 2 θ ) s i n ( 2 θ ) − c o s ( 2 θ ) ] \begin{aligned} &\frac{1}{K}\bm{C} \begin{bmatrix}cos(2\theta)&sin(2\theta)\\cos(2\theta-\frac{2\pi}{3})&sin(2\theta-\frac{2\pi}{3})\\cos(2\theta+\frac{2\pi}{3})&sin(2\theta+\frac{2\pi}{3})\end{bmatrix} =\frac{1}{K}\bm{C}\begin{bmatrix}cos(2\theta)&-cos(2\theta+\frac{\pi}{2})\\cos(2\theta-\frac{2\pi}{3})&-cos(2\theta+\frac{\pi}{2}-\frac{2\pi}{3})\\cos(2\theta+\frac{2\pi}{3})&-cos(2\theta+\frac{\pi}{2}+\frac{2\pi}{3})\end{bmatrix}\\ &=\frac{3}{2}\begin{bmatrix}cos(2\theta)&-cos(2\theta+\frac{\pi}{2})\\sin(2\theta)&-sin(2\theta+\frac{\pi}{2})\end{bmatrix}=\frac{3}{2}\begin{bmatrix}cos(2\theta)&sin(2\theta)\\sin(2\theta)&-cos(2\theta)\end{bmatrix} \end{aligned} K1Ccos(2θ)cos(2θ32π)cos(2θ+32π)sin(2θ)sin(2θ32π)sin(2θ+32π)=K1Ccos(2θ)cos(2θ32π)cos(2θ+32π)cos(2θ+2π)cos(2θ+2π32π)cos(2θ+2π+32π)=23[cos(2θ)sin(2θ)cos(2θ+2π)sin(2θ+2π)]=23[cos(2θ)sin(2θ)sin(2θ)cos(2θ)]
结果是一个对称矩阵,于是得到公式:
C L s 2 C − 1 = 3 2 L s 2 [ c o s ( 2 θ ) s i n ( 2 θ ) s i n ( 2 θ ) − c o s ( 2 θ ) ] … … 1 \bm{CL_{s2}C^{-1}}=\frac{3}{2}L_{s2}\begin{bmatrix}cos(2\theta)&sin(2\theta)\\sin(2\theta)&-cos(2\theta)\end{bmatrix}……1 CLs2C1=23Ls2[cos(2θ)sin(2θ)sin(2θ)cos(2θ)]1

这样就把 A B C ABC ABC下的电感变换到了 α β \alpha\beta αβ坐标系:
C L C − 1 = C ( L s 0 − L s 2 ) C − 1 = 3 2 L s 0 [ 1 0 0 1 ] − 3 2 L s 2 [ c o s ( 2 θ ) s i n ( 2 θ ) s i n ( 2 θ ) − c o s ( 2 θ ) ] … … 2 \begin{aligned} \bm{CLC^{-1}=C(L_{s0}-L_{s2})C^{-1}}=\frac{3}{2}L_{s0}\begin{bmatrix}1&0\\0&1\end{bmatrix}-\frac{3}{2}L_{s2}\begin{bmatrix}cos(2\theta)&sin(2\theta)\\sin(2\theta)&-cos(2\theta)\end{bmatrix} \end{aligned} ……2 CLC1=C(Ls0Ls2)C1=23Ls0[1001]23Ls2[cos(2θ)sin(2θ)sin(2θ)cos(2θ)]2

若考虑线圈漏感 L l L_{l} Ll则无非是增加了一个常数单位阵,结果显然为:
C L C − 1 = 3 2 ( L s 0 + L l ) [ 1 0 0 1 ] − 3 2 L s 2 [ c o s ( 2 θ ) s i n ( 2 θ ) s i n ( 2 θ ) − c o s ( 2 θ ) ] … … 3 \begin{aligned} \bm{CLC^{-1}}=\frac{3}{2}(L_{s0}+L_l)\begin{bmatrix}1&0\\0&1\end{bmatrix}-\frac{3}{2}L_{s2}\begin{bmatrix}cos(2\theta)&sin(2\theta)\\sin(2\theta)&-cos(2\theta)\end{bmatrix} \end{aligned} ……3 CLC1=23(Ls0+Ll)[1001]23Ls2[cos(2θ)sin(2θ)sin(2θ)cos(2θ)]3

三、继续对电压方程进行Park变化

α β \alpha\beta αβ坐标系下的电压方程列在下面方便查看:
u α β = R i α β + d C L C − 1 i α β d t + d ψ f α β d t \begin{aligned} \bm{u_{\alpha\beta}=Ri_{\alpha\beta}+\frac{dCLC^{-1}i_{\alpha\beta}}{dt}+\frac{dψ_{f\alpha\beta}}{dt}} \end{aligned} uαβ=Riαβ+dtdCLC1iαβ+dtdψfαβ
两边同时进行Park变换,使得d轴与永磁体转子的磁场方向重合
u d q = P ( θ ) u α β = P ( θ ) R i α β + P ( θ ) d P ( − θ ) P ( θ ) C L C − 1 P ( − θ ) P ( θ ) i α β d t + P ( θ ) d P ( − θ ) P ( θ ) ψ f α β d t = R i d q + P ( θ ) d P ( − θ ) ( P ( θ ) C L C − 1 P ( − θ ) ) i d q d t + P ( θ ) d P ( − θ ) ψ f d q d t \begin{aligned} &\bm{u_{dq}=P(\theta)u_{\alpha\beta}}\\ &\bm{=P(\theta)Ri_{\alpha\beta}+P(\theta)\frac{dP(-\theta)P(\theta)CLC^{-1}P(-\theta)P(\theta)i_{\alpha\beta}}{dt}+P(\theta)\frac{dP(-\theta)P(\theta)ψ_{f\alpha\beta}}{dt}}\\ &\bm{=Ri_{dq}+P(\theta)\frac{dP(-\theta)(P(\theta)CLC^{-1}P(-\theta))i_{dq}}{dt}+P(\theta)\frac{dP(-\theta)ψ_{fdq}}{dt}} \end{aligned} udq=P(θ)uαβ=P(θ)Riαβ+P(θ)dtdP(θ)P(θ)CLC1P(θ)P(θ)iαβ+P(θ)dtdP(θ)P(θ)ψfαβ=Ridq+P(θ)dtdP(θ)(P(θ)CLC1P(θ))idq+P(θ)dtdP(θ)ψfdq
其中:
P ( θ ) d P ( − θ ) ψ f d q d t = P ( θ ) d P ( − θ ) d t ψ f d q + P ( θ ) P ( − θ ) d ψ f d q d t = − d θ d t P ( θ ) P ( − θ + π 2 ) ψ f d q + d ψ f d q d t = − ω P ( π 2 ) ψ f d q = [ 0 − ω ω 0 ] [ ψ f 0 ] = [ 0 ω ψ f ] … … 4 \begin{aligned} &\bm{P(\theta)\frac{dP(-\theta)ψ_{fdq}}{dt}=P(\theta)\frac{dP(-\theta)}{dt}ψ_{fdq}+P(\theta)P(-\theta)\frac{dψ_{fdq}}{dt}}\\ &\bm{=-\frac{d\theta}{dt}P(\theta)P(-\theta+\frac{\pi}{2})ψ_{fdq}+\frac{dψ_{fdq}}{dt}}=-{\omega}\bm{P(\frac{\pi}{2})ψ_{fdq}}\\ &=\begin{bmatrix}0&-\omega\\\omega&0\end{bmatrix}\begin{bmatrix}ψ_f\\0\end{bmatrix}=\begin{bmatrix}0\\{\omega}ψ_f\end{bmatrix} \end{aligned} ……4 P(θ)dtdP(θ)ψfdq=P(θ)dtdP(θ)ψfdq+P(θ)P(θ)dtdψfdq=dtdθP(θ)P(θ+2π)ψfdq+dtdψfdq=ωP(2π)ψfdq=[0ωω0][ψf0]=[0ωψf]4
上面计算中用到了下面的关系, d q dq dq坐标下转子是静止的并且只有 d d d轴方向的磁场,因此:
d ψ f d q d t = 0 , ψ f d q = [ ψ f 0 ] \begin{aligned} \bm{\frac{dψ_{fdq}}{dt}=0},\bm{ψ_{fdq}}=\begin{bmatrix}ψ_f\\0\end{bmatrix} \end{aligned} dtdψfdq=0,ψfdq=[ψf0]
所以电压方程写成:
u d q = R i d q + P ( θ ) d P ( − θ ) ( P ( θ ) C L C − 1 P ( − θ ) ) i d q d t + [ 0 ω ψ f ] \begin{aligned} &\bm{u_{dq}=Ri_{dq}+P(\theta)\frac{dP(-\theta)(P(\theta)CLC^{-1}P(-\theta))i_{dq}}{dt}}+\begin{bmatrix}0\\{\omega}ψ_f\end{bmatrix} \end{aligned} udq=Ridq+P(θ)dtdP(θ)(P(θ)CLC1P(θ))idq+[0ωψf]
接下来计算 P ( θ ) C L C − 1 P ( − θ ) \bm{P(\theta)CLC^{-1}P(-\theta)} P(θ)CLC1P(θ),写成矩阵是:
P ( θ ) ( 3 2 L s 0 [ 1 0 0 1 ] − 3 2 L s 2 [ c o s ( 2 θ ) s i n ( 2 θ ) s i n ( 2 θ ) − c o s ( 2 θ ) ] ) P ( − θ ) = 3 2 L s 0 [ 1 0 0 1 ] − 3 2 L s 2 P ( θ ) [ c o s ( 2 θ ) s i n ( 2 θ ) s i n ( 2 θ ) − c o s ( 2 θ ) ] P ( − θ ) \begin{aligned} &\bm{P(\theta)}(\frac{3}{2}L_{s0}\begin{bmatrix}1&0\\0&1\end{bmatrix}-\frac{3}{2}L_{s2}\begin{bmatrix}cos(2\theta)&sin(2\theta)\\sin(2\theta)&-cos(2\theta)\end{bmatrix})\bm{P(-\theta)}\\ &=\frac{3}{2}L_{s0}\begin{bmatrix}1&0\\0&1\end{bmatrix}-\frac{3}{2}L_{s2}\bm{P(\theta)}\begin{bmatrix}cos(2\theta)&sin(2\theta)\\sin(2\theta)&-cos(2\theta)\end{bmatrix}\bm{P(-\theta)} \end{aligned} P(θ)(23Ls0[1001]23Ls2[cos(2θ)sin(2θ)sin(2θ)cos(2θ)])P(θ)=23Ls0[1001]23Ls2P(θ)[cos(2θ)sin(2θ)sin(2θ)cos(2θ)]P(θ)
对上式中第二项的中间矩阵变形:
[ c o s ( 2 θ ) s i n ( 2 θ ) s i n ( 2 θ ) − c o s ( 2 θ ) ] = [ s i n ( π 2 − 2 θ ) c o s ( π 2 − 2 θ ) c o s ( π 2 − 2 θ ) − s i n ( π 2 − 2 θ ) ] = [ c o s ( π 2 − 2 θ ) s i n ( π 2 − 2 θ ) − s i n ( π 2 − 2 θ ) c o s ( π 2 − 2 θ ) ] [ 0 1 1 0 ] = P ( π 2 − 2 θ ) [ 0 1 1 0 ] \begin{aligned} &\begin{bmatrix}cos(2\theta)&sin(2\theta)\\sin(2\theta)&-cos(2\theta)\end{bmatrix} =\begin{bmatrix}sin(\frac{\pi}{2}-2\theta)&cos(\frac{\pi}{2}-2\theta)\\cos(\frac{\pi}{2}-2\theta)&-sin(\frac{\pi}{2}-2\theta)\end{bmatrix}\\ &=\begin{bmatrix}cos(\frac{\pi}{2}-2\theta)&sin(\frac{\pi}{2}-2\theta)\\-sin(\frac{\pi}{2}-2\theta)&cos(\frac{\pi}{2}-2\theta)\end{bmatrix}\begin{bmatrix}0&1\\1&0\end{bmatrix}=\bm{P}(\frac{\pi}{2}-2\theta)\begin{bmatrix}0&1\\1&0\end{bmatrix} \end{aligned} [cos(2θ)sin(2θ)sin(2θ)cos(2θ)]=[sin(2π2θ)cos(2π2θ)cos(2π2θ)sin(2π2θ)]=[cos(2π2θ)sin(2π2θ)sin(2π2θ)cos(2π2θ)][0110]=P(2π2θ)[0110]
所以我们有(后面的计算利用了Park变换的对易性质):
P ( θ ) [ c o s ( 2 θ ) s i n ( 2 θ ) s i n ( 2 θ ) − c o s ( 2 θ ) ] P ( − θ ) = P ( θ ) P ( π 2 − 2 θ ) [ 0 1 1 0 ] P ( − θ ) = P ( θ ) [ c o s ( 2 θ ) s i n ( 2 θ ) s i n ( 2 θ ) − c o s ( 2 θ ) ] P ( − θ ) = P ( θ ) P ( π 2 − 2 θ ) P ( θ ) [ 0 1 1 0 ] = P ( π 2 ) [ 0 1 1 0 ] = [ 1 0 0 − 1 ] \begin{aligned} &\bm{P(\theta)}\begin{bmatrix}cos(2\theta)&sin(2\theta)\\sin(2\theta)&-cos(2\theta)\end{bmatrix}\bm{P(-\theta)}=\bm{P(\theta)}\bm{P}(\frac{\pi}{2}-2\theta)\begin{bmatrix}0&1\\1&0\end{bmatrix}\bm{P(-\theta)}\\ &=\bm{P(\theta)}\begin{bmatrix}cos(2\theta)&sin(2\theta)\\sin(2\theta)&-cos(2\theta)\end{bmatrix}\bm{P(-\theta)}=\bm{P(\theta)}\bm{P}(\frac{\pi}{2}-2\theta)\bm{P(\theta)}\begin{bmatrix}0&1\\1&0\end{bmatrix}\\ &=\bm{P}(\frac{\pi}{2})\begin{bmatrix}0&1\\1&0\end{bmatrix}=\begin{bmatrix}1&0\\0&-1\end{bmatrix} \end{aligned} P(θ)[cos(2θ)sin(2θ)sin(2θ)cos(2θ)]P(θ)=P(θ)P(2π2θ)[0110]P(θ)=P(θ)[cos(2θ)sin(2θ)sin(2θ)cos(2θ)]P(θ)=P(θ)P(2π2θ)P(θ)[0110]=P(2π)[0110]=[1001]
这样就得到 d q dq dq轴电感的公式如下:
P ( θ ) C L C − 1 P ( − θ ) = 3 2 L s 0 [ 1 0 0 1 ] − 3 2 L s 2 [ 1 0 0 − 1 ] = [ 3 2 L s 0 − 3 2 L s 2 0 0 3 2 L s 0 + 3 2 L s 2 ] = [ L d 0 0 L q ] … … 5 \begin{aligned} &\bm{P(\theta)CLC^{-1}P(-\theta)}=\frac{3}{2}L_{s0}\begin{bmatrix}1&0\\0&1\end{bmatrix}-\frac{3}{2}L_{s2}\begin{bmatrix}1&0\\0&-1\end{bmatrix}\\ &=\begin{bmatrix}\frac{3}{2}L_{s0}-\frac{3}{2}L_{s2}&0\\0&\frac{3}{2}L_{s0}+\frac{3}{2}L_{s2}\end{bmatrix}=\begin{bmatrix}L_d&0\\0&L_q\end{bmatrix} \end{aligned} ……5 P(θ)CLC1P(θ)=23Ls0[1001]23Ls2[1001]=[23Ls023Ls20023Ls0+23Ls2]=[Ld00Lq]5

利用该结论化简电压方程:
u d q = R i d q + P ( θ ) d P ( − θ ) ( P ( θ ) C L C − 1 P ( − θ ) ) i d q d t + [ 0 ω ψ f ] = R i d q + P ( θ ) d P ( − θ ) d t [ L d 0 0 L q ] [ i d i q ] + [ L d 0 0 L q ] d d t [ i d i q ] + [ 0 ω ψ f ] = R [ i d i q ] + [ 0 − ω ω 0 ] [ L d 0 0 L q ] [ i d i q ] + [ L d 0 0 L q ] d d t [ i d i q ] + [ 0 ω ψ f ] \begin{aligned} &\bm{u_{dq}=Ri_{dq}+P(\theta)\frac{dP(-\theta)(P(\theta)CLC^{-1}P(-\theta))i_{dq}}{dt}}+\begin{bmatrix}0\\{\omega}ψ_f\end{bmatrix}\\ &\bm{=Ri_{dq}+P(\theta)\frac{dP(-\theta)}{dt}}\begin{bmatrix}L_d&0\\0&L_q\end{bmatrix}\begin{bmatrix}i_d\\i_q\end{bmatrix}+\begin{bmatrix}L_d&0\\0&L_q\end{bmatrix}\frac{d}{dt}\begin{bmatrix}i_d\\i_q\end{bmatrix}+\begin{bmatrix}0\\{\omega}ψ_f\end{bmatrix}\\ &=R\begin{bmatrix}i_d\\i_q\end{bmatrix}+\begin{bmatrix}0&-\omega\\\omega&0\end{bmatrix}\begin{bmatrix}L_d&0\\0&L_q\end{bmatrix}\begin{bmatrix}i_d\\i_q\end{bmatrix}+\begin{bmatrix}L_d&0\\0&L_q\end{bmatrix}\frac{d}{dt}\begin{bmatrix}i_d\\i_q\end{bmatrix}+\begin{bmatrix}0\\{\omega}ψ_f\end{bmatrix} \end{aligned} udq=Ridq+P(θ)dtdP(θ)(P(θ)CLC1P(θ))idq+[0ωψf]=Ridq+P(θ)dtdP(θ)[Ld00Lq][idiq]+[Ld00Lq]dtd[idiq]+[0ωψf]=R[idiq]+[0ωω0][Ld00Lq][idiq]+[Ld00Lq]dtd[idiq]+[0ωψf]
上式的计算中,Park变换的微分项之前已经再4式中计算过了,直接拿来用。

四、获得 d q dq dq轴电压方程

经过一系列变换,我终于就得到 d q dq dq轴电压方程:
[ u d u q ] = R [ i d i q ] + [ L d 0 0 L q ] d d t [ i d i q ] + [ 0 − ω L q ω L d 0 ] [ i d i q ] + [ 0 − ω ω 0 ] [ ψ f 0 ] … … 6 \begin{aligned} &\begin{bmatrix}u_d\\u_q\end{bmatrix} =R\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}L_d&0\\0&L_q\end{bmatrix}\frac{d}{dt}\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}0&-{\omega}L_q\\{\omega}L_d&0\end{bmatrix}\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}0&-\omega\\\omega&0\end{bmatrix}\begin{bmatrix}ψ_f\\0\end{bmatrix} \end{aligned} ……6 [uduq]=R[idiq]+[Ld00Lq]dtd[idiq]+[0ωLdωLq0][idiq]+[0ωω0][ψf0]6
或:
{ u d = R i d + L d d i d d t − ω L q i q u q = R i q + L q d i q d t + ω ( L d i d + ψ f ) … … 7 \left\{ \begin{aligned} &u_d=Ri_d+L_d\frac{di_d}{dt}-{\omega}L_qi_q\\ &u_q=Ri_q+L_q\frac{di_q}{dt}+{\omega}(L_di_d+ψ_f) \end{aligned} \right. ……7 ud=Rid+LddtdidωLqiquq=Riq+Lqdtdiq+ω(Ldid+ψf)7
关于 d q dq dq轴电感的计算由下式给出:
{ L d = 3 2 ( L s 0 − L s 2 ) + L l L q = 3 2 ( L s 0 + L s 2 ) + L l … … 8 \left\{ \begin{aligned} &L_d=\frac{3}{2}(L_{s0}-L_{s2})+L_l\\ &L_q=\frac{3}{2}(L_{s0}+L_{s2})+L_l \end{aligned} \right. ……8 Ld=23(Ls0Ls2)+LlLq=23(Ls0+Ls2)+Ll8
按照《三、BLDC矢量控制基础知识:三相线圈的电感矩阵》中的描述(并考虑漏感):
L s 0 L_{s0} Ls0:电机线圈平均电感
L s 2 L_{s2} Ls2:转子位置不同时电机线圈实际电感于平均电感的差值
L l L_l Ll:线圈没有于转子交链的漏感
如电机没有凸极效应,比如表贴式转子则 L s 2 ≈ 0 L_{s2}≈0 Ls20,则 d q dq dq轴的电感大小相当,否则按照公式 L q > L d L_q>L_d Lq>Ld


总结

通过刻苦的推导,完整地推导了一遍 d q dq dq轴电压方程。完成之后感觉清楚了知识上的盲区死角非常畅快。

  • 6
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值