(三十五:2021.01.12)MICCAI 2019学习(一)《前列腺近距离放射治疗中粒子定位的深度回归模型》

本文提出了一种基于3D深度卷积网络的自动粒子定位算法,解决了CT图像中金属伪影和粒子重叠导致的识别难题。与传统方法相比,该深度回归模型在100名患者中提高了16%的定位准确率,达到94.1%,并在大型临床数据库中得到验证。
摘要由CSDN通过智能技术生成

《A Deep Regression Model for Seed Localizationin Prostate Brachytherapy》

讲在前面

  • 一.当前粒子植入手术面对着术中及术后植入粒子剂量核验的问题,本人现在已经完成一部分这样的工作,能够比较有效的将粒子在空间中进行聚类,结果较为理想但在面对多个粒子伪影重叠的情况下,仍然有较大的误差存在。刚好找到这篇极具研究价值的论文,希望能理解其精髓思想,尽快复现其内部知识;
  • 二.我设计了几种字体颜色用于更加醒目地表现关键的思想和主题:
    • 红色表示尚未理解透彻的一些概念
    • 蓝色表示对原来的理解做的一些修改或补充
    • 绿色表示此处需要参考的论文其他部分
    • 橙色表示本文的重要关键字
    • 我会用删除线将自己曾经不到位的理解进行删除

摘要

植入后剂量测定(PID)是前列腺粒子放射治疗的重要步骤,利用CT对前列腺进行成像,并使放射性粒子的位置和剂量分布与实际前列腺直接相关。 但是,由于严重的金属伪影和当多个粒子聚集在一起时出现的高度重叠的外观,因此在CT图像中识别这些种子是一项非常艰巨的任务。 在本文中,我们提出了一种基于3D深层卷积网络的自动高效算法,用于识别CT图像中的植入粒子。我们的方法将粒子定位任务建模为监督回归问题,该问题将输入的CT图像投影到概率图上,其中每个元素代表输入体素属于属于对应粒子的概率。 这种深度回归模型显着抑制了图像伪影,使后处理变得更加容易和可控。该方法在大型临床数据库中得到了验证,该数据库包含100名患者的7820个粒子,其中使用了70名患者的5534个粒子进行了模型训练和 验证。 我们的方法正确地检测了30位测试患者中的2150颗种子,共2286颗(94.1%),与广泛使用的商用种子搜索软件(VariSeed,Varian,Palo Alto,CA)相比,提高了16%。

论文内容

1.介绍

2019年,据估计有174,650例新病例和31,620例死亡,前列腺癌仍然是美国男性中最常见的诊断出的癌症类型。粒子植入物近距离放射治疗涉及将放射性源(粒子)永久植入前列腺内,是中低危前列腺癌的标准选择。尽管在计划和粒子输送方面进行了各种改进,但是由于各种因素(例如针头位置变化,前列腺变形,粒子输送变化和粒子迁移),实际的辐射剂量分布可能会偏离计划。 因此,建议采用植入后剂量测定法(PID)以确保植入质量并建立放射剂量与临床结果之间的关系。PID通常在植入后第30天执行,该操作利用CT对植入区域成像,从中勾勒出前列腺和周围高危器官(OAR)的轮廓,并确定粒子位置。
植入粒子的准确定位对于量化向这些器官的剂量分布至关重要。 但是,鉴于植入了大量粒子,手动识别这些粒子非常耗时,通常每位患者需要10至20分钟才能识别60至100颗种子。 因此,对种子定位的精确和自动匹配的方法有很大的需求。 如图1所示,尽管射线在CT图像上显示出很高的对比度,但由于以下两个独特的特征,自动粒子定位在实际工作中是一项艰巨的任务。大大增加了粒子鉴定的复杂性。 其次,由于粒子传输位置的变化和粒子的迁移,一些植入的粒子彼此非常靠近以形成种子簇。 这种高度重叠的外观使得很难在CT图像上识别单个种子。
已经开发了几种自动方法来在CT图像中定位种子,例如基于几何的识别方法Liu, H., et al.: Automatic localization of implanted seeds from post-implant CTimages. Phys Med Biol 48(9), 1191 - 1203 (2003)】和霍夫变换Holupka, E. J., et al.: An automatic seed finer for brachytherapy CT postplansbased on the Hough transform. Med Phys. 31(9), 2672-2679 (2004)】。最近,Nguyen等人提出了一种级联方法Nguyen, H. G., et al.: Automatic 3D seed location and orientation detection in CTimage for prostate brachytherapy. In: IEEE ISBI 2014, pp. 1320-1323. (2014)】,该方法涉及阈值和关联成分分析作为种子候选物的初始检测,然后是一种改进的k均值方法,用于基于先验强度和体积信息来分离种子组。 张等人【Zhang, G., et al.: Automatic seed picking for brachytherapy postimplant validationwith 3D CT images. Int J CARS. 12, 1985 - 1993 (2017)采用灰度检测和改进的凹点匹配,以在基于灰度直方图的阈值化之后分离触摸种子。 所有这些方法都使用需要特殊领域知识的手工制作的功能。 同时,通常引入复杂的预处理和后处理步骤以促进种子定位过程。 结果,这些方法的评估主要是在体模或少量临床病例的情况下进行的。
图一:
在这里插入图片描述

最近,深卷积神经网络(CNN)在医学图像分析中变得很流行,并且在各种医学图像计算任务(例如肺结节检测,组织学图像中的腺体实例分割,肝和肿瘤分割,皮肤病变分割和分类)。 由于直接从原始图像数据中学习分层特征的能力,CNN通常会产生更好的泛化性能,尤其是在对大型数据集进行评估时。
受到深度学习研究的最新进展的启发,我们提出了基于深度CNN的新型框架,以在3D CT图像中自动定位植入的粒子。 我们在本文中的贡献是三方面的。

  • 首先,我们将种子定位建模为回归问题,并利用深层CNN的判别力引入全自动解决方案。 据我们所知,这是使用深度神经网络解决这一艰巨任务的首次尝试。
  • 其次,我们没有直接预测3D空间中的种子坐标,而是设计了种子位置的概率图来解决人工识别的不确定性,从而提高了模型预测的鲁棒性。
  • 最后,我们在大型临床数据库中对100名患者的7820颗粒子进行了评估,并与商业粒子搜索软件(VariSeed,Varian,Palo Alto,CA)进行了比较。

2.方法论

2.1 深度回归模型

图一所示,红色的点作为粒子的标签,每一个点对应一个原始粒子。但是,考虑到粒子有一定的形状(直径0.8mm,长度4.5mm),只要是在粒子上的点,都应该是正确的注释。结果就是,就种子而言的标签位置而言,可能和真实情况有很大的变化,如果直接将确切的注释位置用作学习目标,则这将带来不必要的挑战并易于过度拟合。与之不同的是,我们将离散的点标签转换成连续的概率图( x ∈ R 3 x\in{R^3} xR3),从而将粒子的定位问题强制转换成监督回归问题,通过这样的方式,来学习3D CT图像 I ( x ) I(x) I(x) 和 概率图 P ( x ) P(x) P(x) 之间的一种映射关系。 P ^ \hat{P} P^是推理出的概率图, w w w是学习到的权重:
P ^ ( x , w ) = F ( I ( x ) , w ) \hat{P}(x,w) = F(I(x),w) P^(x,w)=F(I(x),w)
对于每一个3D图像 I i ( x ) I_i(x) Ii(x)都有它对应的三维点集 C I = C 1 ,

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值