立体匹配算法的分类
根据不同的标准,立体匹配算法有不同的分类方法。首先,根据匹配基元的不同,立体匹配算法可分为:基于区域的匹配算法,基于特征的匹配算法和基于相位的匹配算法。
1.基于区域的匹配算法。主要利用左右视图中,局部窗口之间灰度信息的的相关程度进行匹配。该算法可利用所有的图像信息,最大限度地恢复场景细节特征,在视差连续且纹理丰富的区域有着较高的精确度,能得到稠密的视差图。但该算法存在下几个问题:
(1)弱纹理或重复纹理区域,匹配效果不好;
(2)对光照、噪声等外界环境比较敏感;
(3)该算法在视差不连续区域匹配效不好;
(4)支持窗口大小选择困难。
2.基于特征的匹配算法。该算法巧用图像几何特征信息,如边缘、轮廓、角点等几何基元进行匹配,由于不直接依赖灰度同时图像的特征点数量少、特征性强,所W算法的匹配精度高,速度快。但该算法获得的是稀疏视差图,必须经过复杂的插值方法获取调密视差,在这过程中会产生误差而造成最终视差图的精确度降低。
3.基于相位的匹配算法。上述匹配算法是在空域范围的进行视差估汁,相位匹配算法是在频域范围内进行视差估计。该方法认为参考图像与待匹配图像的匹配点的局部相位是相等的,该算法通过分析带通滤波信号上的相位信息求得匹配图像间的视差值。使用比较多的基于相位的匹配算法有;相位相关法与相位差频法等。我们知道相位反映的是信号的结构信息,因此对图像的高频噪声有很好的抑制效果,能得到亚像素级精度的稠密深度图。但当