浅析卷积神经网络为何能够进行特征提取

CNN在分类领域,有着惊人的效果。我们今天来聊聊为何CNN能有这么大的能力。

在此之前,我们先了解两个数学概念,特征值和特征向量。

这里先放3个传送门:

https://blog.csdn.net/hjq376247328/article/details/80640544

https://blog.csdn.net/woainishifu/article/details/76418176

https://jingyan.baidu.com/article/27fa7326afb4c146f8271ff3.html

前两个是有关特征值和特征向量的博客,最后一个是一个求解特征值和特征向量的博客。OK,进入正题,这里引用以上博客的数据和实例。

这里引用博客的一句话:

也就是说,我们有一个方阵(n x n),总能找到一些向量,这个矩阵跟这些向量的作用效果,只是对这个向量造成了拉伸的作用,换句话说,矩阵的作用跟一个系数的

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值