线性代数(五)-矩阵的初等变换

本文深入讲解了矩阵的初等变换,包括行阶梯形、行最简形和标准形的概念,揭示了通过有限次变换实现矩阵简化的方法。同时,探讨了初等变换的基本性质及其与矩阵可逆性的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、矩阵的初等变换

1.

PS:以上变换皆可逆;

2.

 

其中,有

(1)行阶梯形矩阵:可画出一条阶梯线,线的下方全为0,每个台阶只有一行,台阶数即是非零行的行数,

阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元;

(2)行最简形矩阵:非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0;

PS:对于任何矩阵,总可经过有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵;

(3)标准形:左上角是一个单位矩阵,其余元素全为0;

PS:对于m*n矩阵,总可经过初等变换(行变换和列变换)把它化为标准形;

 

二、初等变换的基本性质

1.

2.

归纳以上,可得

3.

4.

推论:方阵A可逆的充分必要条件是

 

PS:因A可逆的充分必要条件是A可由数个初等矩阵相乘而得,则可通过变换成E;

5.

 

 

 

 

 

 

PS:本例中的可逆矩阵P不是唯一的;

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值