U-Net
- 文章连接https://arxiv.org/pdf/1505.04597.pdf[2015]
- 代码连接https://github.com/ZijunDeng/pytorch-semantic-segmentation[PyTorch]
SegNet
- 文章连接https://arxiv.org/pdf/1511.00561.pdf[2016]
- 代码连接https://github.com/ZijunDeng/pytorch-semantic-segmentation[PyTorch]
DeepLab
- 文章连接https://arxiv.org/pdf/1606.00915.pdf[2017]
- 代码连接https://github.com/isht7/pytorch-deeplab-resnet[PyTorch]
- 代码连接https://github.com/bermanmaxim/jaccardSegment[PyTorch]
FCN
- 文章连接https://arxiv.org/pdf/1605.06211.pdf[2016]
- 代码连接https://github.com/ycszen/pytorch-seg[PyTorch]
- 代码连接https://github.com/Kaixhin/FCN-semantic-segmentation[PyTorch]
本文综述了四种主流的深度学习图像分割模型:U-Net、SegNet、DeepLab和FCN,提供了各模型的论文链接及多个开源实现代码库,涵盖了从2015年至2017年的关键技术进展。
3577

被折叠的 条评论
为什么被折叠?



