note:这部分内容比较偏证明,对我来说有些难度,也好久没更新。今日暂且一记,以后有更深刻的理解之后再来补充。2021.3.16
一、测度的扩张
定义:扩张
设
μ
\mu
μ和
τ
\tau
τ分别是集合系
A
\mathscr A
A和
B
\mathscr B
B上的测度,且
A
⊂
B
\mathscr A \subset \mathscr B
A⊂B,若对每个
A
∈
A
A\in\mathscr A
A∈A都有:
μ
(
A
)
=
τ
(
A
)
\mu(A)=\tau(A)
μ(A)=τ(A)
则称
τ
\tau
τ为
μ
\mu
μ在
B
\mathscr B
B上的扩张。当然,我们也希望这个扩张是唯一的。
- 通过反例可以说明:按照前几节的方式:如果通过生成外测度,且将外测度限制在 σ \sigma σ域上,是无法将原测度扩张的。必须另寻他法。
在讨论扩张的做法之前,需要以下命题作为工具:
命题1.1
设
F
\mathscr F
F是一个
π
\pi
π系,如果
σ
(
F
)
\sigma(\mathscr F)
σ(F)(
F
\mathscr F
F生成的
σ
\sigma
σ域)上的测度
μ
,
v
\mu,v
μ,v满足:
- 对任意 A ∈ F A\in\mathscr F A∈F有 μ ( A ) = v ( A ) \mu(A)=v(A) μ(A)=v(A)
- 若 { A n } \{A_n\} {An}是全集X的一个划分,且 μ \mu μ在这个划分集合中是有界的
那么对任何
A
∈
σ
(
F
)
A\in\sigma(\mathscr F)
A∈σ(F):有
μ
(
A
)
=
v
(
A
)
\mu(A)=v(A)
μ(A)=v(A)。
该命题的意思是,满足第一个条件,且测度在划分集合中是有界的,那么在生成的
σ
\sigma
σ域里两个测度仍是相等的。
定理1.2测度扩张定理
对半环
Q
\mathscr Q
Q上的测度
μ
\mu
μ,存在
σ
(
Q
)
\sigma(\mathscr Q)
σ(Q)上的测度
τ
\tau
τ使得
τ
(
A
)
=
μ
(
A
)
,
∀
A
∈
Q
\tau(A)=\mu(A),\forall A\in \mathscr Q
τ(A)=μ(A),∀A∈Q
若还满足命题1.1的第二条,则测度
τ
\tau
τ是唯一的。
推论1.3
设
Q
\mathscr Q
Q是一半环且
X
∈
Q
X \in \mathscr Q
X∈Q,对
Q
\mathscr Q
Q上的有限测度
μ
\mu
μ,存在
σ
(
Q
)
\sigma(\mathscr Q)
σ(Q)上的唯一测度
τ
\tau
τ使
τ
(
A
)
=
μ
(
A
)
,
∀
A
∈
Q
\tau(A)=\mu(A),\forall A\in \mathscr Q
τ(A)=μ(A),∀A∈Q成立。
证明略,但证明的过程,就是通过 μ \mu μ产生的外测度 τ \tau τ扩张到了比 σ ( Q ) \sigma(\mathscr Q) σ(Q)范围更大的一个 σ \sigma σ域 F τ \mathscr F_{\tau} Fτ上。可以证明,作为 σ ( Q ) \sigma(\mathscr Q) σ(Q)上的测度 τ \tau τ和作为 F τ \mathscr F_{\tau} Fτ上的测度 τ \tau τ的差别很小。
此外,关于Lebesgue-Stieljes可测集、Lebesgue可测集的重要概念,我用图片暂记。可以参见参考1;参考2
二、测度空间的完备化
任何零测集的子集还属于这个测度空间,这是测度空间完备化的定义。类似于泛函分析中的距离空间和赋范空间,任何测度空间也能够完备化。方式如下:
对任意测度空间
(
X
,
F
,
μ
)
(X,\mathscr F,\mu)
(X,F,μ),若令
F
′
=
{
A
∪
N
:
A
∈
F
,
∃
N
⊂
B
∈
F
使
得
μ
(
B
)
=
0
}
\mathscr F' = \{A\cup N:A\in \mathscr F,\exists N\subset B\in \mathscr F使得\mu(B)=0\}
F′={A∪N:A∈F,∃N⊂B∈F使得μ(B)=0}
并令:
μ
′
(
A
∪
N
)
=
μ
(
A
)
\mu'(A\cup N)=\mu(A)
μ′(A∪N)=μ(A)
则
(
X
,
F
′
,
μ
′
)
(X,\mathscr F' ,\mu')
(X,F′,μ′)就是一个完备的测度空间。