测度论与概率论基础学习笔记5——2.3测度的扩张和测度空间的完备化


note:这部分内容比较偏证明,对我来说有些难度,也好久没更新。今日暂且一记,以后有更深刻的理解之后再来补充。2021.3.16


一、测度的扩张
定义:扩张
μ \mu μ τ \tau τ分别是集合系 A \mathscr A A B \mathscr B B上的测度,且 A ⊂ B \mathscr A \subset \mathscr B AB,若对每个 A ∈ A A\in\mathscr A AA都有:
μ ( A ) = τ ( A ) \mu(A)=\tau(A) μ(A)=τ(A)
则称 τ \tau τ μ \mu μ B \mathscr B B上的扩张。当然,我们也希望这个扩张是唯一的。

  • 通过反例可以说明:按照前几节的方式:如果通过生成外测度,且将外测度限制在 σ \sigma σ域上,是无法将原测度扩张的。必须另寻他法。

在讨论扩张的做法之前,需要以下命题作为工具:
命题1.1
F \mathscr F F是一个 π \pi π系,如果 σ ( F ) \sigma(\mathscr F) σ(F) F \mathscr F F生成的 σ \sigma σ域)上的测度 μ , v \mu,v μ,v满足:

  • 对任意 A ∈ F A\in\mathscr F AF μ ( A ) = v ( A ) \mu(A)=v(A) μ(A)=v(A)
  • { A n } \{A_n\} {An}是全集X的一个划分,且 μ \mu μ在这个划分集合中是有界的

那么对任何 A ∈ σ ( F ) A\in\sigma(\mathscr F) Aσ(F):有 μ ( A ) = v ( A ) \mu(A)=v(A) μ(A)=v(A)
该命题的意思是,满足第一个条件,且测度在划分集合中是有界的,那么在生成的 σ \sigma σ域里两个测度仍是相等的。

定理1.2测度扩张定理
对半环 Q \mathscr Q Q上的测度 μ \mu μ,存在 σ ( Q ) \sigma(\mathscr Q) σ(Q)上的测度 τ \tau τ使得
τ ( A ) = μ ( A ) , ∀ A ∈ Q \tau(A)=\mu(A),\forall A\in \mathscr Q τ(A)=μ(A),AQ
若还满足命题1.1的第二条,则测度 τ \tau τ是唯一的。

推论1.3
Q \mathscr Q Q是一半环且 X ∈ Q X \in \mathscr Q XQ,对 Q \mathscr Q Q上的有限测度 μ \mu μ,存在 σ ( Q ) \sigma(\mathscr Q) σ(Q)上的唯一测度 τ \tau τ使 τ ( A ) = μ ( A ) , ∀ A ∈ Q \tau(A)=\mu(A),\forall A\in \mathscr Q τ(A)=μ(A),AQ成立。

证明略,但证明的过程,就是通过 μ \mu μ产生的外测度 τ \tau τ扩张到了比 σ ( Q ) \sigma(\mathscr Q) σ(Q)范围更大的一个 σ \sigma σ F τ \mathscr F_{\tau} Fτ上。可以证明,作为 σ ( Q ) \sigma(\mathscr Q) σ(Q)上的测度 τ \tau τ和作为 F τ \mathscr F_{\tau} Fτ上的测度 τ \tau τ的差别很小。

此外,关于Lebesgue-Stieljes可测集、Lebesgue可测集的重要概念,我用图片暂记。可以参见参考1参考2
在这里插入图片描述

二、测度空间的完备化
任何零测集的子集还属于这个测度空间,这是测度空间完备化的定义。类似于泛函分析中的距离空间和赋范空间,任何测度空间也能够完备化。方式如下:
对任意测度空间 ( X , F , μ ) (X,\mathscr F,\mu) (X,F,μ),若令
F ′ = { A ∪ N : A ∈ F , ∃ N ⊂ B ∈ F 使 得 μ ( B ) = 0 } \mathscr F' = \{A\cup N:A\in \mathscr F,\exists N\subset B\in \mathscr F使得\mu(B)=0\} F={AN:AF,NBF使μ(B)=0}
并令:
μ ′ ( A ∪ N ) = μ ( A ) \mu'(A\cup N)=\mu(A) μ(AN)=μ(A)
( X , F ′ , μ ′ ) (X,\mathscr F' ,\mu') (X,F,μ)就是一个完备的测度空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值