测度论果然十分高深啊…越学越觉得自己水平有限,只能做一些肤浅的理解。
由于比较stupid,本节的证明我都没有学(doge,希望几年之后武功长进之时能回来看看。
引言
外测度的基本想法是用一些形状良好的,已经定义了类似测度概念(称为类测度)的集合去尽可能“小”的覆盖其他集合,然后用这些集合的”类测度“的和作为被覆盖集合的外测度。(参考知乎-外测度)
比如我们在小学都做过这种“数格子”的题:
要测量一个不规则图形的面积,可以用小方格的面积之和来测量。外测度与此有异曲同工之妙。
定义:外测度
这个定义是外测度的抽象定义,其并不严格。
由
X
X
X的所有子集组成的集合系
F
\mathscr F
F到
[
0
,
+
∞
)
[0,+\infty)
[0,+∞)的函数
τ
\tau
τ称为
X
X
X上的外测度,若其满足:
- τ ( ϕ ) = 0 \tau(\phi)=0 τ(ϕ)=0
- 单调性:任何 A ⊂ B ⊂ X A\subset B\subset X A⊂B⊂X有 τ ( A ) ≤ τ ( B ) \tau(A)\le \tau(B) τ(A)≤τ(B)
- 半可列可加性:对 F \mathscr F F中的任意集合列 { A n } \{A_n\} {An}满足 τ ( ∪ n = 1 ∞ A n ) ≤ ∑ n = 1 ∞ τ ( A n ) \tau(\cup_{n=1}^{\infty}A_n)\le \sum_{n=1}^\infty \tau(A_n) τ(∪n=1∞An)≤∑n=1∞τ(An)
按照引论中的说法,我们可以构造如下一个外测度,使之满足上面的几个性质:
设
E
\mathscr E
E是一个集合系且包含空集,若其上的非负集函数
μ
\mu
μ满足
μ
(
ϕ
)
=
0
\mu(\phi)=0
μ(ϕ)=0,对每个
A
∈
F
A\in\mathscr F
A∈F令
τ
(
A
)
=
inf
{
∑
n
=
1
∞
μ
(
B
n
)
:
B
n
∈
E
,
A
⊂
∪
n
=
1
∞
B
n
}
\tau(A)=\inf\{ \sum_{n=1}^\infty \mu(B_n):B_n\in \mathscr E,A\subset \cup_{n=1}^\infty B_n\}
τ(A)=inf{n=1∑∞μ(Bn):Bn∈E,A⊂∪n=1∞Bn}
则
τ
\tau
τ是一个外测度,称为由
μ
\mu
μ生成的外测度.
\space
我们希望一个集合的测度应该等于把该集合分成任意多(至少是可数)个不相交集合的测度的和,因此照如下定义可测集:
设
τ
\tau
τ是
X
X
X上的一个外测度,把满足:
τ
(
D
)
=
τ
(
D
∩
A
)
+
τ
(
D
∩
A
c
)
,
∀
D
∈
F
\tau(D)=\tau(D\cap A)+\tau(D \cap A^c),\forall D\in \mathscr F
τ(D)=τ(D∩A)+τ(D∩Ac),∀D∈F
的子集A称为
τ
\tau
τ可测集,把由全体
τ
\tau
τ可测集组成的集合系记为
F
τ
\mathscr F _\tau
Fτ。
定理:Caratheodory定理
若
τ
\tau
τ是外测度,则
F
τ
\mathscr F _\tau
Fτ是
σ
\sigma
σ域,三元组
(
X
,
F
τ
,
τ
)
(X,\mathscr F _\tau,\tau)
(X,Fτ,τ)是完全测度空间(任意零测集的子集仍属于集合系的测度空间)。
因此,我们将半环上的测度测度扩张为sigma域的测度,就是利用了上面的知识,等学完测度扩张之后,再来补充。