测度论与概率论基础学习笔记4——2.2外测度

测度论果然十分高深啊…越学越觉得自己水平有限,只能做一些肤浅的理解。
由于比较stupid,本节的证明我都没有学(doge,希望几年之后武功长进之时能回来看看。

引言
外测度的基本想法是用一些形状良好的,已经定义了类似测度概念(称为类测度)的集合去尽可能“小”的覆盖其他集合,然后用这些集合的”类测度“的和作为被覆盖集合的外测度。(参考知乎-外测度
比如我们在小学都做过这种“数格子”的题:
在这里插入图片描述
要测量一个不规则图形的面积,可以用小方格的面积之和来测量。外测度与此有异曲同工之妙。

定义:外测度
这个定义是外测度的抽象定义,其并不严格。
X X X的所有子集组成的集合系 F \mathscr F F [ 0 , + ∞ ) [0,+\infty) [0,+)的函数 τ \tau τ称为 X X X上的外测度,若其满足:

  1. τ ( ϕ ) = 0 \tau(\phi)=0 τ(ϕ)=0
  2. 单调性:任何 A ⊂ B ⊂ X A\subset B\subset X ABX τ ( A ) ≤ τ ( B ) \tau(A)\le \tau(B) τ(A)τ(B)
  3. 半可列可加性:对 F \mathscr F F中的任意集合列 { A n } \{A_n\} {An}满足 τ ( ∪ n = 1 ∞ A n ) ≤ ∑ n = 1 ∞ τ ( A n ) \tau(\cup_{n=1}^{\infty}A_n)\le \sum_{n=1}^\infty \tau(A_n) τ(n=1An)n=1τ(An)

按照引论中的说法,我们可以构造如下一个外测度,使之满足上面的几个性质:
E \mathscr E E是一个集合系且包含空集,若其上的非负集函数 μ \mu μ满足 μ ( ϕ ) = 0 \mu(\phi)=0 μ(ϕ)=0,对每个 A ∈ F A\in\mathscr F AF
τ ( A ) = inf ⁡ { ∑ n = 1 ∞ μ ( B n ) : B n ∈ E , A ⊂ ∪ n = 1 ∞ B n } \tau(A)=\inf\{ \sum_{n=1}^\infty \mu(B_n):B_n\in \mathscr E,A\subset \cup_{n=1}^\infty B_n\} τ(A)=inf{n=1μ(Bn):BnE,An=1Bn}
τ \tau τ是一个外测度,称为由 μ \mu μ生成的外测度.
  \space  
我们希望一个集合的测度应该等于把该集合分成任意多(至少是可数)个不相交集合的测度的和,因此照如下定义可测集:
τ \tau τ X X X上的一个外测度,把满足:
τ ( D ) = τ ( D ∩ A ) + τ ( D ∩ A c ) , ∀ D ∈ F \tau(D)=\tau(D\cap A)+\tau(D \cap A^c),\forall D\in \mathscr F τ(D)=τ(DA)+τ(DAc),DF
的子集A称为 τ \tau τ可测集,把由全体 τ \tau τ可测集组成的集合系记为 F τ \mathscr F _\tau Fτ

定理:Caratheodory定理
τ \tau τ是外测度,则 F τ \mathscr F _\tau Fτ σ \sigma σ域,三元组 ( X , F τ , τ ) (X,\mathscr F _\tau,\tau) (X,Fτ,τ)是完全测度空间(任意零测集的子集仍属于集合系的测度空间)。

因此,我们将半环上的测度测度扩张为sigma域的测度,就是利用了上面的知识,等学完测度扩张之后,再来补充。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值