
朱松纯团队成果研究
⊙月
勇前不弃
展开
-
读后感与机翻《AOGNets》
本文是在研究朱松纯团队中大量使用的“与或图”概念而找到的一篇学习论文,下述论文并非朱松纯团队的,而是北卡州立大学一个博士生发明的,其实验室专门研究可解释性深度学习。读后感 作者干了什么事? 将图像语法(与或图)模式和深度学习模式相结合,设计了一种新型网络结构,并获得了很好的效果。 怎么实现的? (细节暂时还没看,后续结合源码详细研究下) 是否有落地的价值? 无论是精度还是速度,似乎很有开展迁移测试的价值。 《AOGNets: Compositiona..原创 2020-11-25 18:26:54 · 705 阅读 · 0 评论 -
读后感与机翻《从视频中推断力量和学习人类效用》
以下是研究朱松纯FPICU概念中U(utility)的相关论文记录:读后感: 作者干了什么事? (1)算法能够预测当人们与物体交互时,身体各个部位(臀部、背部、头部、颈部、手臂、腿等)所承受的力/压力。 (2)这本质上也定义了人体的效用,如舒适性,从而可以解释人的偏好、预估人的行为(比如某种形态的椅子,会推出哪种类型的坐姿)。 怎么实现的? 使用Kinect传感器捕捉火柴人模型。首先将其转换为四面体人体模型,然后将其分割为14个身体部位。使用有限元模拟,在有限元的网格的.原创 2020-11-24 17:08:17 · 421 阅读 · 0 评论 -
读后感和机翻《他们在看哪里,为什么看?在复杂的任务中共同推断人类的注意力和意图》
以下是研究朱松纯FPICU概念中I(intent)的相关论文记录:读后感: 作者干了什么事? 算法可以从视频中预估人类的注意力位置和意图。 怎么实现的? 提出了一个人-注意力-对象(HAO)图来联合表示视频中(人)的任务、注意力和意图。 给定一个RGB-D视频,一个波束搜索算法被用来联合推断任务标签、意图和注意力 有哪些前置条件或特有数据集? 数据集总共包含809个视频,大约330,000帧。在每个视频帧中手工标注任务标签、意图标签、注意点位置、对象标签和.原创 2020-11-24 14:21:50 · 500 阅读 · 0 评论 -
读后感与机翻《整体的三维场景解析和重建从单一的RGB图像》
以下是研究朱松纯FPICU概念中F(functionality)的第一篇论文记录:读后感:文章做了什么事?怎么实现的?目前能否在某些场景应用?《Holistic 3D Scene Parsing and Reconstruction from a Single RGB Image》《整体的三维场景解析和重建从单一的RGB图像》,作者Siyuan Huang等6人ECCV2018,源码:https://github.com/thusiyuan/holistic_s...原创 2020-11-24 10:57:16 · 830 阅读 · 1 评论 -
读后感与机翻《理解工具:面向任务的对象建模、学习和识别》
以下是研究朱松纯FPICU概念中P(physics)的第一篇论文记录:《Understanding Tools:Task-Oriented Object Modeling, Learning and Recognition》作者:Yixin Zhu等3人CVPR 2015代码:https://github.com/xiaozhuchacha/Kinect2Toolbox摘要在本文中,我们提出了一个新的面向任务的建模、学习和识别框架,旨在理解使用对象作为工具时的底层功能、物..原创 2020-11-23 18:05:19 · 814 阅读 · 0 评论 -
速读《图象的随机语法》114页
朱松纯UCLA实验室最牛的PHD应该是朱毅鑫了,UCLA实验室demos中有43个挂了他的名字。而他主页中说道,如想跟随他做研究,发邮件前最好看如下3篇论文:《A Stochastic Grammar of Images》 《A TALE OF THREE PROBABILISTIC FAMILIES: DISCRIMINATIVE, DESCRIPTIVE AND GENERATIVE MODELS》 《“暗”,不止于“深”——迈向认知智能与类人常识的范式转换》第1篇是朱松纯2016年的专著原创 2020-11-23 11:30:14 · 1170 阅读 · 0 评论 -
读后感与机翻《基于理论的因果迁移:结合实例级的归纳和抽象级的结构学习》
摘要在相似但不同的环境中学习可转移知识是广义智力的一个基本组成部分。在本文中,我们从因果理论的角度来探讨迁移学习的挑战。我们的agent具有迁移学习的两个基本而又普遍的理论:(i)任务具有跨领域不变的共同抽象结构,以及(ii)环境的特定特征的行为在跨领域保持不变。我们采用贝叶斯因果理论归纳的观点,利用这些理论在环境之间传递知识。鉴于这些一般理论,我们的目标是通过交互式地探索问题空间来训练agent (i)发现、形成和转移有用的抽象和结构知识,以及(ii)从环境中观察到的实例级属性中归纳有用的知识。利用贝原创 2020-11-19 18:59:29 · 1026 阅读 · 0 评论 -
读后感与机翻《人类因果学习的分解:自下而上的联想学习和自上而下的图式推理》
研究朱松纯FPICU体系的第 2 篇文章《Decomposing Human Causal Learning: Bottom-up Associative Learning and Top-down Schema Reasoning》CogSci2019,有源码。《人类因果学习的分解:自下而上的联想学习和自上而下的图式推理》作者 Mark Edmonds,主页:https://mjedmonds.com/#experience读后感作者干了一件什么事:作者2018年那篇文章说强化..原创 2020-11-19 17:28:16 · 931 阅读 · 0 评论 -
读后感和机翻《人类因果迁移:深度强化学习的挑战》
Human Causal Transfer: Challenges for Deep Reinforcement Learning人类因果迁移:深度强化学习的挑战摘要在新问题语境中发现和应用因果知识是人类智力的一个典型例子。当相互作用中从环境中获得新的信息时,人们发展和完善因果图式,以建立一个对潜在问题约束的简洁解释。本研究的目的是系统地检验人类通过探索环境和将知识转移到具有更大或不同结构复杂性的新情况下发现因果图式的能力。我们开发了一个新的开锁任务,参与者通过移动作为锁的杠杆来打开一扇门,探索原创 2020-11-19 15:10:20 · 1182 阅读 · 0 评论