随着深度学习和计算机视觉技术的迅速发展,目标检测(Object Detection)一直是研究热点。YOLO(You Only Look Once)系列模型作为业界广受关注的目标检测框架,凭借其高效、实时的特点,一直迭代更新到最新的YOLOv8。本篇博客将围绕YOLOv8这个当前讨论度较高的版本展开,介绍其主要特性、应用场景以及如何快速上手,为对目标检测感兴趣的读者提供系统性的学习参考。
目录
一、YOLO家族简述
1.1 YOLO从V1到V8的演进
- YOLOv1:由Joseph Redmon等人于2015年提出,首次将单阶段检测理念引入主流检测框架,将目标检测过程简化为一次端到端的网络推断,大幅提升了检测速度。
- YOLOv2 / YOLO9000:在V1的基础上加入了批归一化(Batch Normalization)、多尺度训练(Multi-scale training)以及先验框(Anchor boxes)等改进。
- YOLOv3:使用Darknet-53作为骨干网络,引入多尺度预测,在速度与精度之间取得了更好的平衡。
- YOLOv4:整合了CSPNet、Mish激活函数等多种创新,进一步提升了模型的检测精度与推断效率。
- YOLOv5:Ultralytics团队的开源实现,提供了强大的工程化支持、友好的部署方案,并在GitHub上保持高速迭代,一度成为工业界应用的“香饽饽”。
- YOLOv7