【项目实战】Python实现GBDT(梯度提升树)回归模型(GradientBoostingRegressor算法)项目实战

339 篇文章 232 订阅

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

GBDT是Gradient Boosting Decision Tree(梯度提升树)的缩写。出版社在对图书进行定价时会考虑图书的页数、纸张、类别、内容、作者及读者等很多因素,用人工来分析较为烦琐,并且容易遗漏。如果能建立一个模型综合考虑各方面因素对图书进行定价,那么就能更加科学合理地节约成本、提升效率,并在满足读者需求的同时促进销售,挖掘更多潜在利润。该GBDT算法产品定价模型也可以用于其他领域的产品定价,如金融产品的定价。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

 

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

 从上图可以看到,总共有5个变量,数据中无缺失值,共1000条数据。

关键代码:

 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析

4.1 价格变量的折线图

用Matplotlib工具的plot()方法绘制折线图:

4.2 类别变量柱状图

用Pandas工具的plot(kind=‘bar’)方法绘制柱状图:

4.3 彩印变量柱状图

用Pandas工具的plot(kind=‘bar’)方法绘制柱状图:

4.4 纸张变量柱状图

用Pandas工具的plot(kind=‘bar’)方法绘制柱状图:

 4.5 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 分类型文本变量处理

在数据集中,类别和纸张变量为分类型文本变量,本文变量无法直接应用于机器学习,需要转换成数值型变量,本项目使用LabelEncoder()标签编码进行转换,转换后的结果为:

 

5.2 建立特征数据和标签数据

关键代码如下:

 

5.3 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.4 特征选择:递归特征删除算法

使用RFE()方法进行特征选择,返回特征的贡献情况,关键代码如下:

返回的结果:

返回的是特征贡献度,可以看到最大的是 页数变量,最小的是 彩印变量。这个在实际应用过程中,根据需要进行选择,由于本案例使用的特征变量不多,所以后续的建模中,所有特征变量都参与。

6.构建GBDT回归模型

主要使用GradientBoostingRegressor算法,用于目标回归。

6.1模型参数

7.模型评估

7.1评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

 从上表可以看出,R方为84.65%  可解释方差值为84.74%,GBDT回归模型效果良好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。

7.3 模型特征重要性

特征重要性如图所示:

从上图可以看到特征变量对此模型的重要性依次为:页数、类别、彩印、纸张。

8.结论与展望

综上所述,本文采用了GBDT回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的定价。

# 用Pandas工具查看数据
print(data.head())
print('******************************')

# 数据缺失值统计
print(data.info())
print('******************************')

# 本次机器学习项目实战所需的资料,项目资源如下:

链接:https://pan.baidu.com/s/1HAElROqJovzOnIjT-hnUNA 
提取码:2k4j







# 描述性统计分析
print(data[['页数', '价格']].describe())
print('******************************')

# 价格变量的折线图
plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
plt.plot(data.index, data['价格'], color='blue', label='价格')
plt.xlabel("索引")
plt.ylabel("价格")
plt.title('价格变量折线图')
plt.legend(loc='upper right', edgecolor='none', facecolor='none')  # 给图加上图例
plt.show()

# 类别变量柱状图
data['类别'].value_counts().plot(kind='bar')
plt.show()
  • 9
    点赞
  • 129
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Gradient Boosting Decision Tree(梯度提升决策GBDT)是一种常用的集成学习算法,在回归问题中常用于预测连续型变量。在这里,我们可以使用GBDT算法来预测Boston房价。 具体实现步骤如下: 1. 准备数据集:我们可以使用sklearn库中的Boston数据集。 2. 划分训练集和测试集:按照一定比例将数据集划分为训练集和测试集。 3. 初始化GBDT算法:初始化决策模型、损失函数、的数量等参数。 4. 迭代训练:对于每一轮迭代,训练一个新的决策,并根据残差更新样本标签。 5. 集成所有决策:将所有决策的结果进行集成,得到最终的预测结果。 6. 评估模型:使用测试集对模型进行评估,计算均方误差(MSE)等指标。 下面是Python代码实现,使用sklearn库中的GradientBoostingRegressor类来实现GBDT算法: ```python from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_squared_error # 加载数据集 boston = load_boston() X = boston.data y = boston.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 初始化GBDT算法 clf = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3) # 迭代训练 clf.fit(X_train, y_train) # 集成所有决策 y_pred = clf.predict(X_test) # 评估模型 mse = mean_squared_error(y_test, y_pred) print('MSE:', mse) ``` 在这个例子中,我们使用100棵决策,每棵的学习率为0.1,最大深度为3。最终得到的MSE为14.18。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖哥真不错

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值