说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
1.项目背景
贝叶斯优化器 (BayesianOptimization) 是一种黑盒子优化器,用来寻找最优参数。
贝叶斯优化器是基于高斯过程的贝叶斯优化,算法的参数空间中有大量连续型参数,运行时间相对较短。
贝叶斯优化器目标函数的输入必须是具体的超参数,而不能是整个超参数空间,更不能是数据、算法等超参数以外的元素。
本项目使用基于贝叶斯优化器(Bayes_opt)优化catboost回归算法来解决回归问题。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
数据详情如下(部分展示):
3.数据预处理
3.1用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:
关键代码:
3.2数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有9个变量,数据中无缺失值,共1000条数据。
关键代码:
3.3数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
4.探索性数据分析
4.1 y变量直方图
用Matplotlib工具的hist()方法绘制直方图:
从上图可以看到,y变量主要集中在-200~200之间。
4.2相关性分析
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1建立特征数据和标签数据
关键代码如下:
5.2数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:
6.构建贝叶斯优化器优化CATBOOST回归模型
主要使用基于贝叶斯优化器优化CATBOOST回归算法,用于目标回归。
6.1构建调优模型
6.2最优参数展示
寻优的过程信息:
最优参数结果展示:
最优参数组合: depth的参数值为: 2 learning_rate的参数值为: 0.44402513912648456 iterations的参数值为: 177 最优分数: 0.9805615548757792 验证集准确率: 0.9333835876590919 |
6.3最优参数构建模型
7.模型评估
7.1评估指标及结果
评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。
从上表可以看出,R方0.9883,为模型效果较好。
关键代码如下:
7.2真实值与预测值对比图
从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。
8.结论与展望
综上所述,本文采用了贝叶斯优化器优化CATBOOST回归模型算法寻找最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。
# 本次机器学习项目实战所需的资料,项目资源如下:
# 项目说明:
# 链接:https://pan.baidu.com/s/1mzScQWtmtPNFcH8vbRPJBg
# 提取码:7eu3
# 用Pandas工具查看数据
print(df.head())
# 查看数据集摘要
print(df.info())
# 数据描述性统计分析
print(df.describe())
# y变量分布直方图
fig = plt.figure(figsize=(8, 5)) # 设置画布大小
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
data_tmp = df['y'] # 过滤出y变量的样本
# 绘制直方图 bins:控制直方图中的区间个数 auto为自动填充个数 color:指定柱子的填充色
plt.hist(data_tmp, bins='auto', color='g')
plt.xlabel('y') # 设置x轴名称
plt.ylabel('数量') # 设置y轴名称
plt.title('y变量分布直方图') # 设置标题名称
plt.show() # 展示图片