数据分享:银行营销数据集-电话营销活动记录数据

说明:如需数据可以直接到文章最后关注获取。

1.数据背景    

 Bank Marketing 数据集是机器学习和数据分析领域中广泛使用的另一个经典数据集。该数据集来源于葡萄牙的一家银行,记录了该银行通过电话营销活动推广定期存款产品的客户互动情况。数据集的目标是预测客户是否会订阅(购买)银行的定期存款产品。

数据集的应用场景-Bank Marketing 数据集广泛应用于以下几个领域:

1)分类模型评估:该数据集常用于评估分类算法的性能,尤其是二分类问题。常见的机器学习算法包括决策树、随机森林、支持向量机、逻辑回归、XGBoost 等。由于目标变量存在类别不平衡问题,研究人员通常会使用一些专门的评估指标(如 AUC-ROC、F1 分数、精确率、召回率等)来评估模型的性能。

2)不平衡数据处理:由于目标变量存在明显的类别不平衡问题,该数据集非常适合用于研究如何处理不平衡数据。常见的方法包括过采样(如 SMOTE)、欠采样、加权损失函数等。

3)特征工程:数据集中包含多种类型的特征(数值型、类别型、时间序列特征等),因此它是一个很好的练习特征工程的工具。研究人员可以尝试不同的特征选择、特征编码和特征组合方法,以提高模型的预测性能。

4)时间序列分析:数据集中包含了一些与时间相关的特征(如 day、month、pdays 等),因此也可以用于时间序列分析和建模。例如,研究人员可以探索不同时间段内客户的响应模式,或者分析季节性因素对营销效果的影响。

5)业务优化:该数据集可以帮助银行优化其电话营销策略。通过分析哪些客户更有可能订阅定期存款产品,银行可以更有针对性地选择潜在客户,从而提高营销活动的成功率和效率。

Bank Marketing 数据集是一个经典的机器学习数据集,广泛应用于分类算法的评估、不平衡数据处理、特征工程和时间序列分析等领域。该数据集提供了丰富的客户特征和营销活动信息,涵盖客户的个人特征、社会经济背景、银行账户信息以及与营销活动相关的交互信息。尽管数据集存在一些局限性,但它仍然是一个非常有价值的研究工具,尤其适合初学者和研究人员进行实践和探索。

2.数据介绍

数据格式为csv格式。      

编号 

变量名称

描述

1

age

客户的年龄

2

job

客户的职业

3

marital

客户的婚姻状况

4

education

客户的最高学历

5

default

客户是否有信用违约记录

6

balance

客户的银行账户余额(以欧元为单位)

7

housing

客户是否有住房贷款

8

loan

客户是否有个人贷款

9

contact

营销人员与客户联系的方式

10

day

上次联系的日期(一个月中的某一天) 

11

month

上次联系的月份

12

duration

上次联系的持续时间(秒)

13

campaign

当前营销活动中与客户的联系次数

14

pdays

自上次营销活动以来的天数(如果从未联系过,则为-1)

15

previous

在当前营销活动之前与客户的联系次数

16

poutcome

上次营销活动的结果(如成功、失败、未知等)

17

y

客户是否订阅了定期存款产品(yes 或 no)

数据详情如下(部分展示):

文本特征说明:

job:

admin.:行政人员(如办公室管理人员、文员等)

blue-collar:蓝领工人(如工厂工人、建筑工人、技术工人等)

entrepreneur:企业家(如企业主、自雇人士等)

housemaid:家庭佣工(如清洁工、保姆等)

management:管理层(如经理、主管等)

retired:退休人员

self-employed:自雇人士(如自由职业者、个体经营者等)

services:服务业人员(如酒店、餐饮、零售等行业员工)

student:学生

technician:技术人员(如工程师、程序员、维修人员等)

unemployed:失业人员

unknown:未知(数据缺失或无法确定)

marital:

married:已婚

divorced:离婚

single:未婚(包括从未结婚和丧偶)

education:

tertiary(高等教育):

描述:表示客户完成了大学本科或以上的教育,包括学士学位、硕士学位、博士学位等。

secondary(中等教育):

描述:表示客户完成了高中或职业培训课程,但未接受过高等教育。

primary(初等教育):

描述:表示客户仅完成了小学或初中教育,或者未完成九年义务教育。

3.数据获取

关注下方    回复1008,获取。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值