另一篇Yolox文章,解决Voc数据集下AP为0:解决YOLOX训练时AP为0
有小伙伴是训练coco数据集时,AP为0,实际上,我并没有遇到这个问题,我这里测试了下,是可以正常运行的,但有小伙伴问了,我这里就总结一下如何训练Coco数据集吧...
步骤如下
- 首先呢,保证Coco数据集格式正确
在Animals_Coco ├─annotations ├─train2017 └─val2017annotations文件夹下包含两个重要的文件instances_train2017.json,instances_val2017.json
在train2017和val2017包含的是训练和验证的图片数据 - 接着修改
yolox/data/datasets/coco_classes.py, 修改为自己数据集的类别COCO_CLASSES = ( "tiger", "panda", ) - 接着按照自己的需求修改
yolox/exp/yolox_base.py(也可以不做修改)(这里应该也可以不用修改,因为后面的exps/example/yolox_voc/yolox_s.py会对self.num_classes进行重载) 将self.num_classes修改为自己的类别数 self.num_classes = 2 (我的数据集是 2) 你还可以修改 self.inputsize, self.random_size 改变训练尺寸大小 你还可以修改 self.test_size 改变测试的尺寸大小 - 修改
exps/example/custom/yolox_s.py修改数据集地址 self

本文档详细介绍了如何解决使用YOLOX框架在COCO数据集上训练时出现AP为0的问题。首先确保数据集格式正确,然后修改yolox/data/datasets/coco_classes.py以匹配自定义类别,接着调整训练和测试的尺寸大小,以及在exps/example定制的配置文件中设置数据集路径、类别数和其他参数。在完成这些步骤后,如果AP仍然为0,可能需要检查JSON文件内容。最后,还提供了一个针对可能出现的TypeError的解决方案。
最低0.47元/天 解锁文章
3601





