【YOLO】YOLOX训练COCO数据集

本文档详细介绍了如何解决使用YOLOX框架在COCO数据集上训练时出现AP为0的问题。首先确保数据集格式正确,然后修改yolox/data/datasets/coco_classes.py以匹配自定义类别,接着调整训练和测试的尺寸大小,以及在exps/example定制的配置文件中设置数据集路径、类别数和其他参数。在完成这些步骤后,如果AP仍然为0,可能需要检查JSON文件内容。最后,还提供了一个针对可能出现的TypeError的解决方案。

另一篇Yolox文章,解决Voc数据集下AP为0:解决YOLOX训练时AP为0

有小伙伴是训练coco数据集时,AP为0,实际上,我并没有遇到这个问题,我这里测试了下,是可以正常运行的,但有小伙伴问了,我这里就总结一下如何训练Coco数据集吧...


步骤如下

  • 首先呢,保证Coco数据集格式正确
    Animals_Coco
       ├─annotations
       ├─train2017
       └─val2017
    
    annotations 文件夹下包含两个重要的文件instances_train2017.jsoninstances_val2017.json
    train2017val2017 包含的是训练和验证的图片数据
  • 接着修改 yolox/data/datasets/coco_classes.py, 修改为自己数据集的类别
    COCO_CLASSES = (
    "tiger",
    "panda",
    )
    
  • 接着按照自己的需求修改 yolox/exp/yolox_base.py(也可以不做修改)
    (这里应该也可以不用修改,因为后面的exps/example/yolox_voc/yolox_s.py会对self.num_classes进行重载)
    将self.num_classes修改为自己的类别数
    self.num_classes = 2 (我的数据集是 2)
    
    你还可以修改 self.inputsize, self.random_size 改变训练尺寸大小
    
    你还可以修改 self.test_size 改变测试的尺寸大小
    
  • 修改 exps/example/custom/yolox_s.py
    修改数据集地址 self
训练YOLOX算法使用COCO数据集,你需要进行以下步骤: 1. 首先,你需要修改`train.py`文件中的`--exp_file`参数值为`yolox_s.py`的文件路径。同时,你还需要修改`self.data_dir`为你存放COCO数据集的文件夹路径,`self.train_ann`为训练集的注释文件名(通常是`instances_train2017.json`),`self.val_ann`为验证集的注释文件名(通常是`instances_val2017.json`),以及`self.num_classes`为你的类别数量。你还可以根据需要修改其他参数,如`self.max_epoch`,`self.data_num_workers`和`self.eval_interval`。\[1\] 2. 确保你的COCO数据集包含在`annotations`文件夹中,其中包括两个重要的文件`instances_train2017.json`和`instances_val2017.json`。这些文件包含了训练和验证集的图像数据。\[2\] 3. 搭建YOLOX的环境。你可以按照YOLOX的文档或教程来安装所需的依赖项和配置环境。\[2\] 4. 训练模型。运行`train.py`文件来开始训练YOLOX算法模型。训练完成后,你可以在`tools/`文件夹下找到测试文件,可以使用`demo.py`和`eval.py`这两个文件来对训练的模型进行测试。在测试时,需要修改配置参数`--exp_file`,确保与训练时的配置文件一致。\[3\] 请注意,以上步骤仅提供了一个大致的指导,具体的操作可能会因YOLOX版本和个人需求而有所不同。建议你参考YOLOX的官方文档或教程以获取更详细的指导。 #### 引用[.reference_title] - *1* *2* *3* [yolox 训练自己的数据集COCO格式)](https://blog.csdn.net/zxxxiazai/article/details/120906366)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 33
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值