目录
目录
这是新版的yolov8目标检测训练步骤,如果用的最新的代码,可以参考这个训练
一、环境安装
1. 运行环境
windows
首先切换到自己建立的虚拟环境安装 pytorch
参照官网,直接使用以下语句即可导入项目所需要的库
pip install ultralytics
根据官方的解释,pip 的 ultralytics 库包含了 requirements.txt中的所有库
训练代码:
链接:https://pan.baidu.com/s/164sApCkqjGgUrittLh1xQg?pwd=hujv
提取码:hujv
onnx预测代码:
链接: https://pan.baidu.com/s/1vkfL_p_TDG65FlW53CiX3g?pwd=ix43
提取码: ix43
二、coco数据集格式及训练步骤
2.1 前期准备
在对应的目录下新建文件
2.2 数据集格式
coco数据集放在datasets文件夹下,格式如下
images
下包含 train、val
文件夹,这两个文件夹下包含此次需要的 图片信息
labels
下包含 train、val
文件夹,这两个文件夹下包含此次需要的 对应图片的标注信息
2.3 yaml文件
在之前创建的yaml里面,将以下内容复制进去,
如果按照我的步骤以及文件地址一样的话,就不用修改train和val的路径了
train: images/train
val: images/val
# number of classes
nc: 3
# class names
names: ['Paaper', 'Rock','Scissors']
nc:类名数量
names:类名
2.4 开始训练
2.4.1 修改参数
2.4.2 开始训练
出现以下画面,则代表成功
训练完后根据上面的提示到runs里面detect里面找到对应的train文件夹,比如上面就保存在train2里面
模型位置如下图:
2.5 模型预测
使用以下命令
yolo detect predict model=weights/best.pt source=data/test_images save=True
model参数:修改为你的best模型地址
source参数:修改为要测试的图片文件夹(没有的可以新建)
三、voc数据集格式及训练步骤
3.1 前期准备
数据集文件结构如下
VOCdevkit
————VOC2007
————Annotations # 存放图片对应的xml文件,与JPEGImages图片名称一一对应
————ImageSets
————Main # 存放trainval.txt、train.txt、val.txt、test.txt,开始为空
————JPEGImages # 存放所有图片文件
新建文件
3.2 数据集划分
将以下代码放入split_train_val.py里面
代码来自参考博客(【YOLOv5、YOLOv7、YOLOv8训练】——VOC数据集划分和YOLO格式转换_yolov7和yolov8训练集一样吗_下雨天不下雨的博客-CSDN博客)
# -*- coding: utf-8 -*-
"""
Author:smile
Date:2022/09/11 10:00
顺序:脚本A1
简介:分训练集、验证集和测试集,按照 8:1:1 的比例来分,训练集9,验证集1
"""
import os
import random
import argparse
parser = argparse.ArgumentParser()
# xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='datasets/VOC2007/Annotations', type=str, help='input xml label path')
# 数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='datasets/VOC2007/ImageSets/Main/', type=str, help='output txt label path')
opt = parser.parse_args()
train_percent = 0.9 # 训练集所占比例
val_percent = 0.1 # 验证集所占比例
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
os.makedirs(txtsavepath)
num = len(total_xml)
list = list(range(num))
t_train = int(num * train_percent)
t_val = int(num * val_percent)
train = random.sample(list, t_train)
num1 = len(train)
for i in range(num1):
list.remove(train[i])
val_test = [i for i in list if not i in train]
val = random.sample(val_test, t_val)
num2 = len(val)
for i in range(num2):
list.remove(val[i])
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
for i in train:
name = total_xml[i][:-4] + '\n'
file_train.write(name)
for i in val:
name = total_xml[i][:-4] + '\n'
file_val.write(name)
file_train.close()
file_val.close()
需要修改的地方
修改完后运行
3.3 生成训练用的txt文件
将以下代码放入voc_label.py
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
sets = ['train', 'val'] # 如果你的Main文件夹没有test.txt,就删掉'test'
# classes = ["a", "b"] # 改成自己的类别,VOC数据集有以下20类别
classes = ['Paaper', 'Rock','Scissors'] # class names
abs_path = os.getcwd()
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(image_id):
in_file = open(abs_path + '/datasets/VOC2007/Annotations/%s.xml' % (image_id), encoding='UTF-8')
out_file = open(abs_path + '/datasets/VOC2007/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
# difficult = obj.find('Difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
b1, b2, b3, b4 = b
# 标注越界修正
if b2 > w:
b2 = w
if b4 > h:
b4 = h
b = (b1, b2, b3, b4)
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
for image_set in sets:
if not os.path.exists(abs_path + '/datasets/VOC2007/labels/'):
os.makedirs(abs_path + '/datasets/VOC2007/labels/')
image_ids = open(abs_path + '/datasets/VOC2007/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
list_file = open(abs_path + '/datasets/VOC2007/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write(abs_path + '/datasets/VOC2007/JPEGImages/%s.jpg\n' % (image_id)) # 要么自己补全路径,只写一半可能会报错
convert_annotation(image_id)
list_file.close()
需要修改的地方
修改完后运行
至此,数据集的样式是这样的
3.4 开始训练
3.4.1 yaml文件参数修改
将以下内容复制到最开始创建的yaml文件里面,注意修改nc 和 names
train: VOC2007/train.txt
val: VOC2007/val.txt
# number of classes
nc: 3
# class names
names: ['Paaper', 'Rock','Scissors']
train和val的路径看情况修改
3.4.2 default.yaml参数修改
3.4.3 utils.py修改参数
3.4.3 开始训练
出现以下画面则成功
3.5 模型预测
使用以下命令
yolo detect predict model=weights/best.pt source=data/test_images save=True
model参数:修改为你的best模型地址
source参数:修改为要测试的图片文件夹(没有的可以新建)
四、pt模型转onnx模型预测
4.1 pt转onnx
运行即可
4.2 预测
代码的目录结构如下:
图片检测只需要进入image_onnx文件夹里
代码中需要修改的地方:
参考:
【YOLO】YOLOv8训练自定义数据集(4种方式)-CSDN博客
【YOLOv5、YOLOv7、YOLOv8训练】——VOC数据集划分和YOLO格式转换_yolov7和yolov8训练集一样吗_下雨天不下雨的博客-CSDN博客