读一篇BLOG — 理解矩阵,矩阵背后的现实意义

本文探讨了矩阵在数学和计算机图形学中的作用,解释了矩阵如何描述线性变换和坐标系变化。矩阵不仅是变换的描述,还可以表示坐标系。作者指出,线性空间中的运动可以通过矩阵来实现,且变换对于不同坐标系有不同表示,但本质不变。同时,文章提出了矩阵与向量乘法的内积运算解释,并引发了关于不同坐标系选择和变换对对象影响的思考。
摘要由CSDN通过智能技术生成

齐友明《重温微积分》
空间 – 对象的集合
向量刻画对象,矩阵刻画对象的运动
矩阵是空间中跃迁的描述
变换,所谓变换,就是空间从一个点(元素/对象)到另一个点(元素/对象)的跃迁
”尽管描述一个三维对象只需要三维向量,但所有的计算机图形学变换矩阵都是4 x 4的。说其原因,很多书上都写着“为了使用中方便”,这在我看来简直就是企图蒙混过关。真正的原因,是因为在计算机图形学里应用的图形变换,实际上是在仿射空间而不是向量空间中进行的。想想看,在向量空间里向一个向量平行移动以后仍是相同的那个向量,而现实世界等长的两个平行线段当然不能被认为同一个东西,所以计算机图形学的生存空间实际上是仿射空间。而仿射变换的矩阵表示根本就是4 x 4的。“
《计算机图形学——几何工具算法详解》
“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”
“若矩阵A与B是同一个线性变换的两个不同的描述(之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系),则一定能找到一个非奇异矩阵P,使得A、B之间满足这样的关系:A = P-1BP
线性代数稍微熟一点的读者一下就看出来,这就是相似矩阵的定义。”

线性代数还有比这更奇妙的性质,那就是,矩阵不仅可以作为线性变换的描述,而且可以作为一组基的描述。而且也能够把线性空间中的一个坐标系(基)表换到另一个坐标系(基)去

  1. 首先有空间,空间可以容纳对象运动的。一种空间对应一类对象。
  2. 有一种空间叫线性空间,线性空间是
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值