b站李沐_pytorch动手机器学习09_softmax回归学习笔记

Softmax回归

知识点总览
  • 回归和分类问题的概念

  • softmax算子的作用和原理

  • 为什么使用交叉熵函数

一、分类和回归

机器学习两大基本问题,分类和回归

  • 回归问题:预测的是一个具体数值,是连续值。模型输出一个数值;

  • 分类问题:预测的是一个类别,是离散值。模型输出一个向量,表示每一个类别的预测概率;

回归问题中,常使用MSE和MAE损失函数,计算模型预测值和真实值之间的距离差距作为损失;

分类问题相比回归问题,不关注每一个类别的具体概率数值,更关心对于正确类别的输出概率,是否远远大于其它类别的输出概率,因此损失函数使用MSE/MAE就不太合适,优化目标为:
o y − o i ≥ △ ( y , i ) o_y - o_i \geq \triangle (y,i) oyoi(y,i)
其中 o y o_y oy为正确类别概率, o i o_i oi为其它类别概率;

二、Softmax算子

假定当前网络输出为 o o o,是一个长度为n的向量,除此之外没有任何约束。这也是我们经典的网络的输出形式。而我们希望的输出是一个长度为n的向量,每一个分量表示预测为第i类的概率;

定义一个softmax算子, y ^ = s o f t m a x ( o ) \hat{y}=softmax(o) y^=softmax(o),得到一个长度为n的向量 y ^ \hat{y} y^ y ^ \hat{y}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值