Softmax回归
知识点总览
-
回归和分类问题的概念
-
softmax算子的作用和原理
-
为什么使用交叉熵函数
一、分类和回归
机器学习两大基本问题,分类和回归
-
回归问题:预测的是一个具体数值,是连续值。模型输出一个数值;
-
分类问题:预测的是一个类别,是离散值。模型输出一个向量,表示每一个类别的预测概率;
回归问题中,常使用MSE和MAE损失函数,计算模型预测值和真实值之间的距离差距作为损失;
分类问题相比回归问题,不关注每一个类别的具体概率数值,更关心对于正确类别的输出概率,是否远远大于其它类别的输出概率,因此损失函数使用MSE/MAE就不太合适,优化目标为:
o y − o i ≥ △ ( y , i ) o_y - o_i \geq \triangle (y,i) oy−oi≥△(y,i)
其中 o y o_y oy为正确类别概率, o i o_i oi为其它类别概率;
二、Softmax算子
假定当前网络输出为 o o o,是一个长度为n的向量,除此之外没有任何约束。这也是我们经典的网络的输出形式。而我们希望的输出是一个长度为n的向量,每一个分量表示预测为第i类的概率;
定义一个softmax算子, y ^ = s o f t m a x ( o ) \hat{y}=softmax(o) y^=softmax(o),得到一个长度为n的向量 y ^ \hat{y} y^, y ^ \hat{y}