利用openCV+python进行HSV颜色识别,并结合滑动条动态改变目标颜色

HSV颜色空间更容易表示一个特定颜色,通过opencv读取的图片为BGR颜色空间,我们利用cv2.cvtColor()可以轻松实现颜色空间的转变。

 

在函数之前,我们先大致了解一下HSV基本颜色分量范围(通过实验得到的模糊范围,实际操作中我们可以据此做出适当调整)。

图片来自:https://blog.csdn.net/taily_duan/article/details/51506776

 

函数学习

1. cv2.inRange(src, lowerb, upperb)

 

作用:

官方解释就是检查数组元素是否位于另外两个数组的元素之间,简言之就是找出指定范围内的颜色,并返回一个二值图像,指定范围内的图像显示为白色,相反为黑色。(注:cv2.inRange()函数对应的颜色空间为HSV)

 

参数:

  • src:输入图像
  • lowerb:颜色范围下边界(lower boundary)
  • upperb:颜色范围上边界(upper boundary)

 

e.g.

import cv2
import numpy as np
#载入原图
img_original=cv2.imread('E:\ShannonT\\notebook workspace\\images\\qicai.png')
#转变为HSV颜色空间
img_hsv=cv2.cvtColor(img_original,cv2.COLOR_BGR2HSV)
#返回黄色区域的二值图像
img_yellow=cv2.inRange(img_original,(27,160,215),(83,255,255))
cv2.imshow('img_original',img_original)
cv2.imshow('img_target',img_target)
cv2.waitKey()
cv2.destroyAllWindows() 

程序输出如下:

2. cv2.bitwise_and(src1,src2[,mask])

 

作用:

将图像1和图像2进行按位与操作(bitwise:按位)

 

参数:

  • src1:输入图像1
  • src2:输入图像2
  • mask:可选参数,掩模(可以理解为一个窗口,作用为实现指定区域内的图像操作)

 

e.g.

import cv2
import numpy as np
#载入原图
img_original=cv2.imread('E:\ShannonT\\notebook workspace\\images\\qicai.png')
#转变为HSV颜色空间
img_hsv=cv2.cvtColor(img_original,cv2.COLOR_BGR2HSV)
#返回黄色区域的二值图像
img_yellow=cv2.inRange(img_original,(27,160,215),(83,255,255))
##输入图像与输入图像在掩模条件下按位与,得到掩模范围内的原图像
img_specifiedColor=cv2.bitwise_and(img_original,img_original,mask=img_yellow)
cv2.imshow('img_yellow',img_specifiedColor)
cv2.waitKey()
cv2.destroyAllWindows()

程序输出如下:

 

下面通过一个具体的案例实现图像内黄色信息的识别,并加入滑动条的功能,可以让用户更直观地体验HSV颜色空间。

import cv2
import numpy as np
#定义窗口名称
winName='Colors of the rainbow'
#定义滑动条回调函数,此处pass用作占位语句保持程序结构的完整性
def nothing(x):
    pass
img_original=cv2.imread('E:\ShannonT\\notebook workspace\\images\\qicai.png')
#颜色空间的转换
img_hsv=cv2.cvtColor(img_original,cv2.COLOR_BGR2HSV)
#新建窗口
cv2.namedWindow(winName)
#新建6个滑动条,表示颜色范围的上下边界,这里滑动条的初始化位置即为黄色的颜色范围
cv2.createTrackbar('LowerbH',winName,27,255,nothing)
cv2.createTrackbar('LowerbS',winName,160,255,nothing)
cv2.createTrackbar('LowerbV',winName,215,255,nothing)
cv2.createTrackbar('UpperbH',winName,83,255,nothing)
cv2.createTrackbar('UpperbS',winName,255,255,nothing)
cv2.createTrackbar('UpperbV',winName,255,255,nothing)
while(1):
    #函数cv2.getTrackbarPos()范围当前滑块对应的值
    lowerbH=cv2.getTrackbarPos('LowerbH',winName)
    lowerbS=cv2.getTrackbarPos('LowerbS',winName)
    lowerbV=cv2.getTrackbarPos('LowerbV',winName)
    upperbH=cv2.getTrackbarPos('UpperbH',winName)
    upperbS=cv2.getTrackbarPos('UpperbS',winName)
    upperbV=cv2.getTrackbarPos('UpperbV',winName)
    #得到目标颜色的二值图像,用作cv2.bitwise_and()的掩模
    img_target=cv2.inRange(img_original,(lowerbH,lowerbS,lowerbV),(upperbH,upperbS,upperbV))
    #输入图像与输入图像在掩模条件下按位与,得到掩模范围内的原图像
    img_specifiedColor=cv2.bitwise_and(img_original,img_original,mask=img_target)
    cv2.imshow(winName,img_specifiedColor)
    if cv2.waitKey(1)==ord('q'):
        break
cv2.destroyAllWindows()

GIF效果如下:

 

#欢迎关注我的微信公众号

好的,以下是一个简单的 Python 颜色识别程序示例: 首先安装必要的库:OpenCV 和 NumPy。 ``` pip install opencv-python numpy ``` 接着,复制以下代码保存为 `color_detection.py` 文件。 ``` import cv2 import numpy as np # 创建显示窗口 cv2.namedWindow("Color Detection") cv2.namedWindow("Mask") cv2.namedWindow("Result") # 在窗口中创建滑动条来调整阈值 cv2.createTrackbar("Lower H", "Color Detection", 0, 179, lambda x:x) cv2.createTrackbar("Lower S", "Color Detection", 0, 255, lambda x:x) cv2.createTrackbar("Lower V", "Color Detection", 0, 255, lambda x:x) cv2.createTrackbar("Upper H", "Color Detection", 179, 179, lambda x:x) cv2.createTrackbar("Upper S", "Color Detection", 255, 255, lambda x:x) cv2.createTrackbar("Upper V", "Color Detection", 255, 255, lambda x:x) # 读取图像 img = cv2.imread("test.jpg") while True: #图像转换到 HSV 颜色空间 hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # 获取滑动条的值 lower_h = cv2.getTrackbarPos("Lower H", "Color Detection") lower_s = cv2.getTrackbarPos("Lower S", "Color Detection") lower_v = cv2.getTrackbarPos("Lower V", "Color Detection") upper_h = cv2.getTrackbarPos("Upper H", "Color Detection") upper_s = cv2.getTrackbarPos("Upper S", "Color Detection") upper_v = cv2.getTrackbarPos("Upper V", "Color Detection") # 设定阈值过滤出颜色 lower_color = np.array([lower_h, lower_s, lower_v]) upper_color = np.array([upper_h, upper_s, upper_v]) mask = cv2.inRange(hsv, lower_color, upper_color) #掩模进行开运算,去除噪声 kernel = np.ones((5,5), np.uint8) opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) # 标记图像中的目标颜色 result = cv2.bitwise_and(img, img, mask=opening) # 显示图像 cv2.imshow("Color Detection", hsv) cv2.imshow("Mask", mask) cv2.imshow("Result", result) # 按下 ESC 键退出 if cv2.waitKey(1) == 27: break # 释放所有窗口和摄像头资源 cv2.destroyAllWindows() ``` 接下来,运行该脚本调整滑动条来筛选出图像中的特定颜色。程序会同时显示图像掩模和标记出目标颜色图像。按下 ESC 键退出程序。 注意:在程序运行期间,不要操作或移动该窗口。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

田土豆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值