openCV python低通滤波方法汇总

低通滤波(Low-Pass Filter,简称LPF)可以对图像进行模糊处理,以便去除噪声。究其本质,均为对图像的卷积操作。下面对几种常见的低通滤波函数进行一一讲解,包括:均值滤波cv2.blur()cv2.boxFilter(),高斯滤波cv2.GaussianBlur(),中值滤波cv2.medianBlur(),双边滤波cv2.bilateralFilter(),2D滤波(自定义卷积核)cv2.filter2D()。

 

1. 均值滤波,函数cv2.blur(),或者cv2.boxFilter()

均值滤波采用卷积框内各像素值的均值来替代定位点(或称锚点,通常是中间位置)的像素值。

                      

函数cv2.blur(src,ksize[,anchor[,borderType]])

概要:

采用归一化的卷积框(箱式滤波器)模糊图像,卷积框形如:

参数:

  • src:               输入的原图像,可以有任意的通道,但是图像深度须为CV_8U,CV_16U,CV_16S,CV_32F,CV_64F
  • ksize:           卷积框的尺寸
  • anchor:       (可选参数)表示定位点或者锚点,默认值为(-1,-1),指的是卷积框的中心
  • borderType:(可选参数)决定图像在进行滤波操作(卷积)时边沿像素的处理方式。详情见https://blog.csdn.net/Kelvin_Yan/article/details/50515235?utm_source=blogxgwz6

返回值:

模糊化后的图像

e.g.

import cv2
img_original=cv2.imread('E:\ShannonT\\notebook workspace\\images\\4.23.6.jpg')
#均值滤波
img_blur=cv2.blur(img_original,(5,5))
cv2.imshow('original',img_original)
cv2.imshow('blur',img_blur)
cv2.waitKey()
cv2.destroyAllWindows()

效果如下:

函数cv2.boxFilter(src,ddepth,ksize[,anchor[,normalize[,borderType]]])

概要:

采用卷积框(箱式滤波器)模糊图像,卷积框如下所示:

其中

参数:

  • src:               输入的图像
  • ddepth:        输出图像的深度,-1表示与原图像深度相同
  • ksize:           卷积框的尺寸
  • anchor:       (可选参数)表示定位点,默认值为(-1,-1),指的是卷积框的中心
  • normalize:  (可选参数)当normalize=True表示卷积核归一化,此时效果等同于cv2.blur()
  • borderType:(可选参数)决定图像在进行滤波操作(卷积)时边沿像素的处理方式

返回值:

模糊化后的图像

e.g.

img_blur=cv2.boxFilter(img_original,-1,(5,5))

2. 高斯滤波,函数cv2.GaussianBlur()

卷积核换成高斯核(即卷积核中心的值最大,其余位置根据距离中心元素的距离递减),即将均值滤波的求平均值改为求加权平均值。通常用来处理高斯噪声,卷积框形如:

                             K=\frac{1}{16}\begin{bmatrix} 1 & 2 &1 \\ 2& 4 &2 \\ 1& 2&1 \end{bmatrix}                     K=\frac{1}{273}\begin{bmatrix} 1&4 &7 &4 &1 \\ 4& 16 & 26 &16 &4 \\ 7&26 &41 &26 &7 \\ 4& 16&26 & 16 &4 \\ 1& 4 &7 &4 &1 \end{bmatrix}

函数cv2.GaussianBlur(src,ksize,sigmaX[,sigmaY[,borderType]])

概述:

采用高斯核模糊图像

参数:

  • src:               任意通道数的输入图像
  • ksize:            卷积框的尺寸,宽度和高度可以不同,但必须为正奇数;或者可以为0,然后由sigma计算得出
  • sigmaX:        X方向的标准差。标准差越小,中间位置权值越大,模糊越不明显
  • sigmaY:       (可选参数),若只指定了sigmaX的值,sigmaY取相同值;若都为0,则由ksize.height和ksize.width计算出来                             

     

  • borderType:(可选参数)决定图像在进行滤波操作(卷积)时边沿像素的处理方式

返回值:

模糊化后的图像

e.g.

给原图添加一个高斯噪声,并且进行高斯滤波,最后按照原图、高斯噪声图、模糊化图的顺序显示图片

import cv2
import skimage
import numpy as np
#载入原图,并且归一化
img_original=cv2.imread('E:\ShannonT\\notebook workspace\\images\\4.23.6.jpg')
img_original_standard=img_original/255
#添加高斯噪声,函数返回的归一化的多维数组
img_noise=skimage.util.random_noise(img_original_standard,mode='gaussian')
#高斯滤波
img_blur=cv2.GaussianBlur(img_noise,(5,5),9)
#按照原图,高斯噪声图,模糊化图的顺序显示图片
imgs=[img_original,img_noise,img_blur]
imgs=np.hstack([img_original_standard,img_noise,img_blur])
cv2.imshow('Images',imgs)
cv2.waitKey()
cv2.destroyAllWindows()

效果显示如下:

3. 中值滤波,函数cv2.medianBlur()

用与卷积框对应位置像素的中值来替代中心像素的值,通常用来处理椒盐噪声。

函数cv2.medianBlur(src,ksize)

概述:

使用中值滤波器模糊图像

参数:

  • src:    输入任意通道的图像,但是图像深度只能是CV_8U, CV_16U, or CV_32F,对于更大的孔径尺寸,只能是CV_8U,因此输入图像不能为归一化的数组。
  • ksize:孔径线性尺寸; 它必须是奇数且大于1,例如:3,5,7 ......

返回值:

模糊化后的图像

e.g.

给原图添加一个椒盐噪声,并且进行中值滤波,最后按照原图、椒盐噪声图、模糊化图的顺序显示图片

import cv2
import skimage
import numpy as np
#载入原图,并且归一化
img_original=cv2.imread('E:\ShannonT\\notebook workspace\\images\\4.23.6.jpg')
img_original_standard=img_original/255
#添加椒盐噪声,函数返回的归一化的多维数组,由于cv2.medianBlur()输入图像不能为归一化数组,所以转为'uint8'
img_noise=skimage.util.random_noise(img_original_standard,mode='salt')
img_noise_8U=(img_noise*255).astype(np.uint8)
#中值滤波
img_blur=cv2.medianBlur(img_noise_8U,3)
#按照原图,椒盐噪声图,模糊化图的顺序显示图片
imgs=[img_original,img_noise_8U,img_blur]
imgs=np.hstack([img_original,img_noise_8U,img_blur])
cv2.imshow('Images',imgs)
cv2.waitKey()
cv2.destroyAllWindows()

结果显示如下:

4. 双边滤波,函数cv2.bilateralFilter()

双边滤波能在保持边界清晰的情况下有效地去除噪声,通俗点讲均值滤波和中值滤波只考虑了像素值(颜色空间)的影响;而高斯滤波只考虑坐标空间的影响;双边滤波兼顾颜色空间和坐标空间。详情可以参见https://blog.csdn.net/keith_bb/article/details/54427779

函数cv2.bilateralFilter(src,d,sigmaColor,sigmaSpace[,borderType])

概述:

采用双边滤波器模糊图像

参数:

  • src:               单通道或者3通道的图像
  • d:                  像素点的邻域直径,如果取值非正数,则由sigmaSpace计算得到,且与sigmaSpace成比例
  • sigmaColor:  颜色空间的高斯函数标准差
  • sigmaSpace: 坐标空间的高斯函数标准差,如果d>0,则由d计算得到
  • borderType:(可选参数)决定图像在进行滤波操作(卷积)时边沿像素的处理方式

返回值:

模糊化后的图像

e.g.

通过对灰度图像分别进行高斯滤波和双边滤波,发现双边滤波可以保持边界的特性

import cv2
import numpy as np
#载入灰度图像并进行适当缩放
img_original=cv2.imread('E:\ShannonT\\notebook workspace\\images\\4.28.5.jpg',0)
img_original=cv2.resize(img_original,(0,0),fx=0.5,fy=0.5)
#高斯滤波
img_gassianblur=cv2.GaussianBlur(img_original,(5,5),9)
#双边滤波
img_bilateralblur=cv2.bilateralFilter(img_original,13,46,8)
cv2.imshow('original',img_original)
cv2.imshow('img_gassianblur',img_gassianblur)
cv2.imshow('img_bilateralblur',img_bilateralblur)
cv2.waitKey()
cv2.destroyAllWindows()

效果如下:

5. 自定义卷积核低通滤波,函数cv2.filter2D()

openCV提供的函数cv2.filter2D()实现了对图像的卷积基本操作,我们可以自行设计卷积核,实现均值滤波,高斯滤波等

函数cv2.filter2D(src,ddepth,kernel[,anchor[,delta[,borderType]]])

概述:

使用卷积框对图像进行卷积操作

参数:

  • src:               输入的图片
  • ddepth:         输出图像的深度,当取值为-1时表示与原图像深度相同
  • kernel:          卷积核
  • anchor:       (可选参数)表示定位点,默认值为(-1,-1),指的是卷积框的中心
  • delta:          (可选参数)在将目标图像存储进多维数组前,可以将每个像素值增加delta,默认为0
  • borderType:(可选参数)决定图像在进行滤波操作(卷积)时边沿像素的处理方式

返回值:

卷积处理后的图像

e.g.

自定义一个卷积核,采用最基本的均值模板,对灰度图像进行卷积操作

import cv2
import numpy as np
#自定义一个均值滤波器
kernel=np.ones((5,5))/25
#载入灰度原图
img_original=cv2.imread('E:\ShannonT\\notebook workspace\\images\\4.28.5.jpg',0)
img_original=cv2.resize(img_original,(0,0),fx=0.5,fy=0.5)
#卷积操作,使delta分别为0和50
img_filter=cv2.filter2D(img_original,-1,kernel,delta=0)
img_filter_delta=cv2.filter2D(img_original,-1,kernel,delta=50)
#显示结果
cv2.imshow('originial',img_original)
cv2.imshow('filtered',img_filter)
cv2.imshow('filtered+delta',img_filter_delta)
cv2.waitKey()
cv2.destroyAllWindows()

结果显示如下:

这段代码实现了一个并查集数据结构。并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。它支持两种操作: - 查找(Find):确定元素属于哪一个子集。它可以被用来确定两个元素是否属于同一子集。 - 合并(Union):将两个子集合并成同一个集合。 并查集可以用于解决很多实际问题,例如: - 判断无向图中是否有环 - 在图像处理中,判断连通区域 - 在游戏开发中,判断游戏中角色的关系 在这段代码中,类 UnionFindSet 的初始化函数 __init__ 接收两个参数:起始点 start 和结束点 n。接着定义了两个列表 pre 和 rank,用于存储每个节点的父节点和树的深度。其中,pre[i] 表示节点 i 的父节点,如果 pre[i] = i,则 i 为该集合的代表元素。 接下来的函数 init 用于初始化并查集,将每个节点的父节点设置为自身,深度为 1。 函数 find_pre 用于查找节点 x 的代表元素,同时实现了路径压缩的优化,即将查找路径上的所有节点都直接连接到代表元素上,减少查找时间。 函数 is_same 用于判断节点 x 和节点 y 是否在同一个集合中,即是否具有相同的代表元素。 函数 unite 用于合并两个集合,即将 x 所在的集合和 y 所在的集合合并为一个集合。首先查找 x 和 y 的代表元素,如果它们已经在同一个集合中,则直接返回 False。否则,将深度较小的集合连接到深度较大的集合上,并更新代表元素和深度。 最后,函数 is_one 用于判断整个并查集是否只有一个集合。它首先找到起始点的代表元素 temp,然后遍历起始点到结束点之间的所有节点,如果存在任意一个节点的代表元素不等于 temp,则说明存在多个集合,返回 False;否则,所有节点都在同一个集合中,返回 True。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

田土豆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值