利用GPT2LMHeadModel构建预训练模型

上一篇文章介绍了入门huggingface预训练的新路历程,模型也通了,但毕竟手动写出来的都是bug,也遇到了比较多问题,比如模型保存与加载的过程就麻烦。

上一篇提到,在闲聊对话模型debug过程中,看到了如下代码

class GPT2LMHeadModel(GPT2PreTrainedModel):
    
    def __init__(self, config):
        super().__init__(config)
            self.transformer =GPT2Model(config)
            self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

了解了预训练模型之后,这不就通了吗?前面是一个预训练的GPT2模型,后面是一个用于下游任务的线性层。人家都给咱写好了。

那么,就去看看这个GPT2LMHeadModel。

源码中,该模型一路继承GPT2PreTrainedModel,继承PreTrainedModel,该模型在transformers.modeling_utils中,该模型有save_pretrained 和 from_pretrained函数,不用我们在写什么保存模型读取模型的过程了。

而GPT2Model也就是我们前面古典小说里的模型结构,一样的,只不过这里是封装好的。包括词向量和位置向量、模型主体、曾归一化,都通过config的参数设置具体形状。

再去看看GPT2LMHeadModel的文档,

import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

那结合上一篇,这不就有了,最重要的tokenizer和model都给了,那我们就可以处理我们的数据转换成id,然后加载想要的预训练模型,在我们的数据上训练几个epoch(一般两三个就差不多了),用写好的save_pretrained保存模型即可。

到此,又有一个新的问题,如何通过config参数,设置模型,这样还能用预训练吗?感觉上来说,用config文件可以方便的定义自己的模型结构,应该是需要从头训练,再看再报。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值