将用via标注的数据集的json文件转换成labelme标注的json文件

该博客介绍了如何将使用via工具标注的一系列图片的json文件转换成labelme可接受的json格式。通过读取via的json数据,提取图片名称和区域信息,然后构造符合labelme格式的对象,最终将每个图片的标注保存为单独的json文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.下面这个是我用via标注生成的 一系列图片的 json文件集合,frames0_0.jpg是第一张图片的名字

2.下面是我要生成的labelme的数据集json格式

 

转换代码如下:

# -*- coding: utf-8 -*-
"""
Created on Sat Jul  4 21:35:04 2020

@author: wfb
"""
import json
import numpy as np

path='C:\\Users\\Administrator\\Desktop\\D11\\via_export_json.json' 
with open(path,'r',encoding='utf8')as fp:    #打开json文件
    json_data = json.load(fp)
    for count,L in enumerate(json_data):
        print(json_data[L]['filename'])
        filename=json_data[L]['filename'][0:-4]  
                 #由于via标注的时候是所有图片的标签集中在一

<think>好的,用户问的是如何将多边形标注JSON文件转换YOLO格式的文件。首先,我需要确认用户使用的标注工具是什么,比如LabelmeVIA或者其他,因为不同工具的JSON结构可能不同。假设用户使用的是Labelme,因为这是比较常见的情况,但我也应该提到其他可能性。 接下来,我需要回忆YOLO格式的要求。YOLO的每个图像对应一个.txt文件,每行包含类别索引、归一化的中心点坐标以及宽度和高度,都是相对于图像尺寸的比例。而多边形标注通常是多个点,需要先转换矩形框,或者如果是实例分割的话,可能需要处理多边形数据,但YOLO的检测任务一般用矩形框,分割任务需要不同的处理方式。 用户的问题可能涉及到目标检测,所以可能需要将多边形转换为矩形边界框。这时候需要计算多边形的外接矩形,也就是最小包围盒。然后,将这个矩形的坐标归一化,并写入YOLO格式。 接下来要考虑JSON的结构。例如,LabelmeJSON中每个shape包含label和points数组,还有图像的高度和宽度。需要解析这些数据,计算每个多边形的外接矩形,然后归一化坐标。 还需要注意类别索引的转换,YOLO需要的是从0开始的整数,而JSON中的标签可能是字符串,所以需要一个类别列表来映射。 可能用户在处理时遇到的困难包括坐标归一化的计算,或者如何处理多个多边形,以及图像路径的对应。此外,要确保生的txt文件与图像文件同名,并放在正确的位置。 另外,可能需要提醒用户,如果原始标注本来就是矩形,可能直接提取顶点即可,但如果是任意多边形,必须计算最小外接矩形。还有,转换后的YOLO格式是否适用于他们的训练框架,比如Darknet或Ultralytics YOLOv5等,通常结构是一致的。 最后,提供一个Python脚本的示例会比较有帮助,展示如何读取JSON,处理数据,生txt文件。同时需要指出注意事项,比如路径问题、类别顺序、坐标系转换可能出现的错误等。</think>将多边形标注JSON 文件转换为 YOLO 格式需要以下步骤。这里以常见的 **Labelme 格式 JSON** 转 **YOLO TXT 格式**为例,其他工具的 JSON 格式原理类似: --- ### **1. 理解两种格式的区别** - **Labelme JSON 格式** 记录每个目标的多边形顶点坐标(例如:`[[x1,y1], [x2,y2], ..., [xn,yn]]`),以及图像尺寸信息。 - **YOLO TXT 格式** 每行对应一个目标,格式为: `[class_id] [x_center] [y_center] [width] [height]` 其中坐标和宽高是归一化后的值(范围 0~1)。 --- ### **2. 核心转换逻辑** 1. **提取图像尺寸** 从 JSON 中获取图像的 `width` 和 `height`,用于归一化坐标。 2. **将多边形转换为矩形边界框** - 计算多边形的最小外接矩形(找到所有顶点的 `min_x, max_x, min_y, max_y`)。 - 根据外接矩形计算中心点 `(x_center, y_center)` 和宽高 `(width, height)`。 3. **归一化坐标** - 使用公式: ``` x_center_normalized = (x_center) / image_width y_center_normalized = (y_center) / image_height width_normalized = (width) / image_width height_normalized = (height) / image_height ``` 4. **映射类别ID** 将 JSON 中的类别名称(如 `"cat"`)映射为 YOLO 的整数类别索引(如 `0`)。 --- ### **3. Python 代码示例** ```python import json import os def labelme_to_yolo(json_path, output_dir, class_list): # 读取 Labelme JSON 文件 with open(json_path, 'r') as f: data = json.load(f) # 获取图像尺寸 img_width = data['imageWidth'] img_height = data['imageHeight'] yolo_lines = [] for shape in data['shapes']: # 提取类别名称并映射为索引 label = shape['label'] class_id = class_list.index(label) # 提取多边形顶点坐标 points = shape['points'] x_coords = [p[0] for p in points] y_coords = [p[1] for p in points] # 计算最小外接矩形 min_x = min(x_coords) max_x = max(x_coords) min_y = min(y_coords) max_y = max(y_coords) # 计算中心点和宽高 width = max_x - min_x height = max_y - min_y x_center = min_x + width / 2 y_center = min_y + height / 2 # 归一化 x_center_norm = x_center / img_width y_center_norm = y_center / img_height width_norm = width / img_width height_norm = height / img_height # 写入YOLO行 yolo_line = f"{class_id} {x_center_norm:.6f} {y_center_norm:.6f} {width_norm:.6f} {height_norm:.6f}" yolo_lines.append(yolo_line) # 保存为同名的 TXT 文件 txt_filename = os.path.splitext(os.path.basename(json_path))[0] + ".txt" txt_path = os.path.join(output_dir, txt_filename) with open(txt_path, 'w') as f: f.write('\n'.join(yolo_lines)) # 使用示例 class_list = ["cat", "dog"] # 你的类别列表 json_path = "path/to/your_labelme.json" output_dir = "path/to/output" labelme_to_yolo(json_path, output_dir, class_list) ``` --- ### **4. 注意事项** 1. **多边形的外接矩形可能不精准** 如果原始标注是旋转矩形或复杂形状,外接矩形会丢失角度信息。若需要旋转框,需使用 YOLO 的旋转框格式(非标准YOLO格式)。 2. **确保 JSON 与图像同名** YOLO 要求标注文件与图像文件同名(如 `image.jpg` 对应 `image.txt`)。 3. **类别索引必须连续** `class_list` 的顺序需与模型训练的类别顺序一致,且从 `0` 开始。 4. **处理多边形重叠问题** 如果一个对象被标注为多个多边形,需根据业务逻辑合并或拆分。 --- 如果有其他格式的 JSON(如 COCO、VIA 等),请提供具体格式,我可以补充对应转换逻辑!
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值