斜齿轮重合度计算公式_斜齿齿轮传动中重合度计算的探讨

对于啮合的第一部分又可分为两个阶段,由主动轮的齿根上某一点与从动轮齿顶啮合开始至到节点处为第一阶段,从啮合节点处开始至主动轮齿顶与从动轮齿根上某一点的啮合脱离接触为啮合的第二阶段。由此可见,无论是主动轮还是从动轮,齿顶都是全部参加啮合的,而齿根都是部分参加啮合。

啮合区长的求解为求端面啮合区长,先来求端面齿廓方程。在方程(4)中,令z=0得z(n)=x(n)tg(6)联立式(1)、(6)及方程(4)的前两式即可得到斜齿微线段的端面齿廓方程,在这儿,简记为:x端=x(rb0,0,)y端=y(rb0,0,)或f端(x端,y端)=0(7)注意,此时坐标系应为绕O2点旋转的端面坐标系。

端面的法向齿距即等于线段G1D1。为求解方便起见,建立固定坐标系XO2Y,则在此坐标系中,G1点坐标为(-r2sinPO2G1,-r2cosPO2G1),P点坐标为(0,-r2),则可写出直线G1PD1的方程为:Y r2X=r2-r2cosPO2G1-r2sinPO2G1(12)以下标1表示G1点所在齿廓曲线,下标点表示D1点所在齿廓曲线,很显然,齿廓曲线2可用齿廓曲线1绕O2点旋转2z2角(z2为齿数)得到,即P1O2P2=2z2。又由G1点成为共轭点的条件可得:PO2P1=2-( )=arctg(f端x端f端y端)=cos-1(x端cos y端sinr2)(13)代入G1点位于齿顶圆的条件可由式(7)求得G1点的坐标(x端G1,y端G1),再将其代入式(13)即可求得PO2P1,因此:P2O2P=2z2-PO2P1可以求出。将所求得的D1点坐标与G1点在XO2Y中的坐标代入距离公式即可求得法向齿距P法。在上述公式中只要将G1点坐标换成齿廓上任一已知点坐标即可求得此处的重合度系数,若此值小于1表示该点处于单齿对啮合区。综上所述,可得斜齿微线段齿轮的重合度求解方法,作者已根据上述结果编写了相应的求解程序。

斜齿微线段齿轮是一个新生事物,有着众多的优点,但其中有待研究的问题还很多。本文成功地解决了斜齿微线段齿轮传动中重合度计算的问题,为斜齿微线段齿轮的进一步研究打下了坚实的基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值