数学-集合

集合

概念

“一堆东西”放在一起,称为集合 (set),通常用大写字母表示, A 0 A_0 A0

元素

a 0 ∈ A a_0 \in A a0A

a 1 ∉ A a_1 \notin A a1/A

列举和描述

列举 𝐴 = { 1 , 2 , 3 } 𝐴 =\{1,2,3\} A={1,2,3}
描述 𝐵 = { 𝑥 ∶ 𝑥 是 有 理 数 } 𝐵 = \{𝑥 ∶ 𝑥是有理数\} B={xx}

子集

定义:A的每一个元素都在B中,记为 A ⊆ B A\subseteq B AB

相等,记为 𝐴 = 𝐵 𝐴 = 𝐵 A=B
真子集 A ⊆ B A \subseteq B AB A ≠ B A \neq B A=B,记为 $ A \subsetneqq B$
空集 ∅ \varnothing

集合运算

交: A ⋂ B = { x : x ∈ A 且 x ∈ B } A \bigcap B = \{x: x\in A 且 x \in B\} AB={x:xAxB}

并: A ⋃ B = { x : x ∈ A 或 x ∈ B } A\bigcup B = \{x: x\in A 或 x \in B\} AB={x:xAxB}

差: A ∖ B = { x : x ∈ A 且 x ∉ B } A\setminus B = \{x: x\in A 且 x \notin B\} AB={x:xAx/B}

范围符号

任意: ∀ \forall

存在: ∃ \exists

基数

集合中元素的个数成为集合的基数(或势),记为 ∣ A ∣ \mid A \mid A

常见集合

  • 自然数: N 0 = N 0 = { 0 , 1 , 2 , …   } {\displaystyle \mathbb {N} _{0}=\mathbb {N} ^{0}=\{0,1,2,\dots \}} N0=N0={0,1,2,}
  • 非零自然数: N ∗ = N + = N 1 = N > 0 = { 1 , 2 , …   } {\displaystyle \mathbb {N} ^{*}=\mathbb {N} ^{+}=\mathbb {N} _{1}=\mathbb {N} _{>0}=\{1,2,\dots \}} N=N+=N1=N>0={1,2,}
  • 整数: Z \mathbb{Z} Z -3,-2,-1,0,1,2 …
  • 有理数: Q \mathbb{Q} Q 5.3, 1/3…
  • 实数: R \mathbb{R} R 有理数+无理数
  • 复数: C \mathbb{C} C
手写体

|N

Z丿

|Q

|R

|C

latex

需要的包
usepackage{amsmath,amssymb}

集合的大括号: { a , b , c } \{a,b,c\} {a,b,c}

集合中的“|”: ∣ \mid

A的闭包: A ‾ \overline{A} A

∅ \emptyset : \emptyset
∅ \varnothing : \varnothing
∈ \in : \in
∉ \notin /: \notin

⊆ \subseteq : \subseteq
⫋ \subsetneqq : \subsetneqq
⊇ \supseteq : \supseteq
⊄ \not\subset : \not\subset

⋂ \bigcap : \bigcap
⋃ \bigcup : \bigcup
⋁ \bigvee : \bigvee
⋀ \bigwedge : \bigwedge
⨄ \biguplus : \biguplus
⨆ \bigsqcup : \bigsqcup

∀ \forall : \forall
∃ \exists : \exists
∃ \exists : \exists

实数集理论

区间

( a , b ) (a,b) (a,b)

[ a , b ) [a,b) [a,b): { x : a ≤ x < b } \{x: a\leq x<b\} {x:ax<b}

邻域

ϵ \epsilon ϵ: \epsilon

U ( a , ϵ ) U(a, \epsilon) U(a,ϵ) U 0 ( a , ϵ ) U_0(a, \epsilon) U0(a,ϵ): { x : a − ϵ < x < a + ϵ } \{x: a-\epsilon<x<a+\epsilon\} {x:aϵ<x<a+ϵ}

U 0 ( a , ϵ ) U_0(a, \epsilon) U0(a,ϵ): { x : a − ϵ < x < a + ϵ   且 x ≠ a } \{x: a-\epsilon<x<a+\epsilon\ 且 x\neq a\} {x:aϵ<x<a+ϵ x=a}

数轴

笛卡尔坐标系

实数集 R \mathbb {R} R上的数和数轴上的点一一对应

问题
  • 有理数 Q \mathbb{Q} Q是否布满数轴?NO

  • 有理数在数轴上以何种状态分布?稠密, ∀ ( a , b ) ⋂ Q ≠ ∅ \forall (a,b) \bigcap \mathbb{Q} \neq \varnothing (a,b)Q=

  • 怎样描述实数集的连续性?完备性。

确界

上界
上确界

上界中最小的一个,记为 M = sup ⁡ E M = \sup E M=supE

下确界

下界中最大的一个,记为 M = inf ⁡ E M = \inf E M=infE

确界存在定理

非空有上界的实数集必有上确界

非空有下界的实数集必有下确界

基数

有理数有多少个?

无理数有多少个?

实数有多少个?

无穷和无穷是不是一样大?

等势

集合A到集合B存在双射,称A与B等势, 记为 A ≈ B A\approx B AB.

特别地,称与自然数集 N \mathbb N N等势的集合为可列集

Z ≈ N \mathbb Z \approx \mathbb N ZN

N ≈ Q \mathbb N \approx \mathbb Q NQ

( 0 , 1 ) ≈ R (0, 1) \approx \mathbb R (0,1)R

N ≉ R \mathbb N \not\approx \mathbb R NR (康托定理)

离散数学中,集合是一个非常基础且重要的概念。集合的简单运算包括交、并、差、补等。下面,我将介绍这些集合运算的实验原理和过程。 实验原理: 在集合运算中,我们需要用到两个集合(或多个集合),并根据运算符进行相应的操作。具体而言,交运算需要找出两个集合的交集;并运算需要找出两个集合的并集;差运算需要找出第一个集合与第二个集合的差集;补运算需要找出一个集合相对于全集的补集。 实验过程: 1. 交运算 假设有两个集合 A 和 B,它们的交集可以表示为 A ∩ B。我们可以通过以下步骤进行交运算的实验: - 准备两个集合 A 和 B,记录它们的元素- 找出 A 和 B 中的共同元素,即它们的交集。 - 将交集元素组成一个新的集合 C,即 C = A ∩ B。 2. 并运算 假设有两个集合 A 和 B,它们的并集可以表示为 A ∪ B。我们可以通过以下步骤进行并运算的实验: - 准备两个集合 A 和 B,记录它们的元素- 将 A 和 B 中的元素合并,去除重复元素,即得到它们的并集。 - 将并集元素组成一个新的集合 C,即 C = A ∪ B。 3. 差运算 假设有两个集合 A 和 B,它们的差集可以表示为 A - B。我们可以通过以下步骤进行差运算的实验: - 准备两个集合 A 和 B,记录它们的元素- 找出 A 中与 B 不同的元素,即得到它们的差集。 - 将差集元素组成一个新的集合 C,即 C = A - B。 4. 补运算 假设有一个集合 A,它的补集可以表示为 A'。我们可以通过以下步骤进行补运算的实验: - 准备一个集合 A,记录它的元素- 准备一个全集 U,它包含所有可能的元素- 找出 U 中与 A 不同的元素,即得到 A 相对于 U 的补集。 - 将补集元素组成一个新的集合 C,即 C = A'。 总结: 以上就是离散数学集合运算的实验原理和过程。通过这些实验,我们可以更好地理解集合运算的概念和应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zheng.plus

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值