集合
概念
“一堆东西”放在一起,称为集合 (set),通常用大写字母表示, A 0 A_0 A0
元素
a 0 ∈ A a_0 \in A a0∈A
a 1 ∉ A a_1 \notin A a1∈/A
列举和描述
列举
𝐴
=
{
1
,
2
,
3
}
𝐴 =\{1,2,3\}
A={1,2,3}
描述
𝐵
=
{
𝑥
∶
𝑥
是
有
理
数
}
𝐵 = \{𝑥 ∶ 𝑥是有理数\}
B={x∶x是有理数}
子集
定义:A的每一个元素都在B中,记为 A ⊆ B A\subseteq B A⊆B
相等,记为
𝐴
=
𝐵
𝐴 = 𝐵
A=B
真子集
A
⊆
B
A \subseteq B
A⊆B且
A
≠
B
A \neq B
A=B,记为 $ A \subsetneqq B$
空集
∅
\varnothing
∅
集合运算
交: A ⋂ B = { x : x ∈ A 且 x ∈ B } A \bigcap B = \{x: x\in A 且 x \in B\} A⋂B={x:x∈A且x∈B}
并: A ⋃ B = { x : x ∈ A 或 x ∈ B } A\bigcup B = \{x: x\in A 或 x \in B\} A⋃B={x:x∈A或x∈B}
差: A ∖ B = { x : x ∈ A 且 x ∉ B } A\setminus B = \{x: x\in A 且 x \notin B\} A∖B={x:x∈A且x∈/B}
范围符号
任意: ∀ \forall ∀
存在: ∃ \exists ∃
基数
集合中元素的个数成为集合的基数(或势),记为 ∣ A ∣ \mid A \mid ∣A∣
常见集合
- 自然数: N 0 = N 0 = { 0 , 1 , 2 , … } {\displaystyle \mathbb {N} _{0}=\mathbb {N} ^{0}=\{0,1,2,\dots \}} N0=N0={0,1,2,…}
- 非零自然数: N ∗ = N + = N 1 = N > 0 = { 1 , 2 , … } {\displaystyle \mathbb {N} ^{*}=\mathbb {N} ^{+}=\mathbb {N} _{1}=\mathbb {N} _{>0}=\{1,2,\dots \}} N∗=N+=N1=N>0={1,2,…}
- 整数: Z \mathbb{Z} Z -3,-2,-1,0,1,2 …
- 有理数: Q \mathbb{Q} Q 5.3, 1/3…
- 实数: R \mathbb{R} R 有理数+无理数
- 复数: C \mathbb{C} C
手写体
|N
Z丿
|Q
|R
|C
latex
需要的包
usepackage{amsmath,amssymb}
集合的大括号: { a , b , c } \{a,b,c\} {a,b,c}
集合中的“|”: ∣ \mid ∣
A的闭包: A ‾ \overline{A} A
∅
\emptyset
∅: \emptyset
∅
\varnothing
∅: \varnothing
∈
\in
∈: \in
∉
\notin
∈/: \notin
⊆
\subseteq
⊆: \subseteq
⫋
\subsetneqq
⫋: \subsetneqq
⊇
\supseteq
⊇: \supseteq
⊄
\not\subset
⊂: \not\subset
⋂
\bigcap
⋂: \bigcap
⋃
\bigcup
⋃: \bigcup
⋁
\bigvee
⋁: \bigvee
⋀
\bigwedge
⋀: \bigwedge
⨄
\biguplus
⨄: \biguplus
⨆
\bigsqcup
⨆: \bigsqcup
∀
\forall
∀: \forall
∃
\exists
∃: \exists
∃
\exists
∃: \exists
实数集理论
区间
( a , b ) (a,b) (a,b)
[ a , b ) [a,b) [a,b): { x : a ≤ x < b } \{x: a\leq x<b\} {x:a≤x<b}
邻域
ϵ \epsilon ϵ: \epsilon
U ( a , ϵ ) U(a, \epsilon) U(a,ϵ) U 0 ( a , ϵ ) U_0(a, \epsilon) U0(a,ϵ): { x : a − ϵ < x < a + ϵ } \{x: a-\epsilon<x<a+\epsilon\} {x:a−ϵ<x<a+ϵ}
U 0 ( a , ϵ ) U_0(a, \epsilon) U0(a,ϵ): { x : a − ϵ < x < a + ϵ 且 x ≠ a } \{x: a-\epsilon<x<a+\epsilon\ 且 x\neq a\} {x:a−ϵ<x<a+ϵ 且x=a}
数轴
笛卡尔坐标系
实数集 R \mathbb {R} R上的数和数轴上的点一一对应
问题
-
有理数 Q \mathbb{Q} Q是否布满数轴?NO
-
有理数在数轴上以何种状态分布?稠密, ∀ ( a , b ) ⋂ Q ≠ ∅ \forall (a,b) \bigcap \mathbb{Q} \neq \varnothing ∀(a,b)⋂Q=∅
-
怎样描述实数集的连续性?完备性。
确界
上界
上确界
上界中最小的一个,记为 M = sup E M = \sup E M=supE
下确界
下界中最大的一个,记为 M = inf E M = \inf E M=infE
确界存在定理
非空有上界的实数集必有上确界
非空有下界的实数集必有下确界
基数
有理数有多少个?
无理数有多少个?
实数有多少个?
无穷和无穷是不是一样大?
等势
集合A到集合B存在双射,称A与B等势, 记为 A ≈ B A\approx B A≈B.
特别地,称与自然数集 N \mathbb N N等势的集合为可列集
Z ≈ N \mathbb Z \approx \mathbb N Z≈N
N ≈ Q \mathbb N \approx \mathbb Q N≈Q
( 0 , 1 ) ≈ R (0, 1) \approx \mathbb R (0,1)≈R
N ≉ R \mathbb N \not\approx \mathbb R N≈R (康托定理)