深度学习基本概念

:一个数据处理模块,将一个或者多个输入张量转换为一个或者多个输入张量。
模型:层构成的有向无环图。
激活函数:为了得到更丰富的假设空间,充分利用多层表示的优势,需要添加非线性激活函数,relu等。
损失函数:即目标函数,在训练过程中需要将其最小化。用于衡量当前任务是否成功完成。对于二分类问题,可以使用二元交叉熵损失函数,对于多分类问题可以用分类交叉熵损失函数,对于回归问题可以用均方误差损失函数,对于序列学习问题可以用联结主义时序分类损失函数等。
优化器:决定如何基于损失函数对网络进行更新。它执行的是随机梯度下降法(SGD)的某个变体。
训练集、验证集和测试集:在训练数据上训练模型,在验证数据上评估模型,一旦找到最佳参数,就在测试集上最后测试一下。
数据预处理:处理数据更适用于神经网络处理,包括向量化、标准化和处理缺失值。
特征工程:选择合适的特征向量表示模型数据。
过拟合与欠拟合:机器学习的根本问题是优化和泛化之间的对立。优化是指调节模型以在训练数据上得到最佳性能(即机器学习中的学习),而泛化是指训练好的模型在前所未有的数据上的性能好坏。优化和泛化是相关的:训练数据上的损失越小,测试数据上的损失也越小,这个时候是欠拟合,但随着迭代次数增加,泛化不再提高,验证指标先是不变,然后变差,即模型过拟合。降低过拟合的方法叫做
正则化

机器学习通用工作流程:
1.定义问题,收集数据集;
2.选择衡量成功的指标,精度,准确率,召回率等;
3.确定评估方法,留出验证集,K折交叉验证,重复的k折验证等;
4.准备数据;
5.开发比基准更好的模型;
6.扩大模型规模:开发过拟合的模型;
7.模型正则化与调节超参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值